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Abstract

In this thesis, a control strategy that maximizes exploitation of the available electrostatic

actuation authority is studied, and its application to the case of the LISA Pathfinder

Accelerometer Mode is carried out.

The successful catching of test masses after release from their launch lock is crucial to the

operation of spaceborne inertial sensors. Due to potentially high release velocities, high

electrostatic forces need to be applied while avoiding saturation of the sensor electronics.

Work on the LISA Pathfinder mission showed that this particular phase is still critical

and, for possible future missions, improvements of the existing design are desirable.

Three main components can be identified as involved in this particular phase: the avail-

able hardware, the force to voltage conversion law, and the test mass control law.

The present work contributes to the research of a control strategy that best exploits the

available hardware, with the goal of increasing robustness of the catching process.

In order to do so, the limits of linear control are explored, by designing and comparing

several different concepts. The idea of maximum actuation exploitation is then devel-

oped, and a nonlinear bang-bang velocity breaking controller is designed. An extension

of the existing actuation algorithm is developed, that realizes the maximum possible

force generation out of the current electronics and geometric configuration. In ideal

testing environment, the new concept shows ability to exploit the system electrostatic

actuation up to 96.5% of its theoretical limit. The velocity breaking controller is fi-

nally combined with a linear controller and a Kalman filter, to define a complete control

strategy. Controller testing is then carried out using the nonlinear LISA Pathfinder

performance simulator. Comparison with the existing design shows an improvement in

maximum tolerable release velocity by a factor of approximately 2.5.



Sommario

In questa tesi è eseguito lo studio di una strategia di controllo che sfrutti al massimo

l’uso dell’attuazione elettrostatica disponibile. Ne viene poi eseguita l’applicazione al

caso dell’Accelerometer Mode per la missione LISA Pathfinder.

La cattura corretta delle masse di prova dopo il rilascio dal loro alloggiamento di lancio

è fondamentale per il funzionamento di sensori inerziali nello spazio. A causa delle

potenzialmente elevate velocità di rilascio, si rende necessaria la possibilità di applicare

elevate forze elettrostatiche, evitando allo stesso tempo saturazione dell’elettronica dello

strumento. Il lavoro svolto nell’ambito della missione LISA Pathfinder ha messo in

luce che questa fase è ancora critica e, per possibili missioni future, è auspicabile un

miglioramento della soluzione esistente.

Tre elementi principali sono coinvolti in questa fase: l’hardware esistente, la legge di

conversione forze-voltaggi, e la legge di controllo della massa.

Questo lavoro contribuisce alla ricerca di una strategia di controllo che sfrutti al meglio

l’hardware esistente, con l’obiettivo di aumentare la robustezza del processo di cattura.

Per fare ciò, in primo luogo sono esplorati i limiti del controllo lineare, definendo e

comparando varie possibilità. In seguito, è sviluppata l’idea di sfruttamento massimo

dell’attuazione, risultando nella definizione di un controllore nonlineare di tipo bang-

bang per la frenata della velocità. Viene quindi sviluppata un estensione dell’attuale

algoritmo di attuazione, che realizza la massima forza possibile per l’hardware esistente.

In condizioni di test ideali, il nuovo metodo di controllo si dimostra capace di sfruttare

l’attuazione elettrostatica fino al 96.5% del suo limite teorico. Il controllore di frenata

della velocità è quindi combinato con un controllore lineare e un filtro di Kalman, cos̀ı da

definire una strategia di controllo completa. Vari test del controllore sono eseguiti usando

il simulatore nonlineare di prestazioni della missione LISA Pathfinder. Confronti con la

soluzione attuale dimostrano un incremento nella massima velocità di rilascio tollerata

di un fattore 2.5 circa.
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Chapter 1

Introduction

After the LISA spacecraft have reached their target orbit, before science operations can

begin, the test masses they carry have to be released from their launch lock, and caught

using electrostatic actuation. The successful catching of the Test Mass after release

is essential for the mission. During the development and implementation of the LISA

Pathfinder mission, it has been recognized that the test mass release from the launch

lock is still critical. For this reason, improvements in hardware, capacitive actuation

algorithm and control law are desirable.

This master thesis work focuses on the development of a control strategy and algorithm

design with the goal to achieve the best possible catching performances, for the existing

hardware constraints.

After some background on the LISA missions is given, a recap of the work on which

the present control strategy has been designed is presented. Finally, the motivation

to improve the existing design is explained, and the contributions of this thesis are

presented.

1.1 The LISA Experiment

The Evolved Laser Interferometer Space Antenna (eLISA) is a proposed space mission

concept designed to detect and measure gravitational waves, whose existence was pre-

dicted by Einstein within the frame of his General Relativity Theory.

eLISA will be the first space-based gravitational wave detector. The need for a space

detector arises from the fact that the strongest expected gravitational waves (the ones

originating from massive black holes and star binaries) are predicted to have frequencies

2
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Figure 1.1: Artist’s impression of the three LISA spacecraft ©Airbus Defence and
Space

in the 10−4 to 10−1 Hz range, and generate a strain (the fraction of stretching or squeez-

ing of the space they travel into) expected to be h ∼= 10−20 when passing through the

Earth. The combination these two factors makes them essentially impossible to measure

in ground facilities, due to all sorts of ground-related disturbances.

However, the realization of such an ambitious mission requires the use of various new

technologies never built and tested before, some of which cannot at all be tested on

ground. An entire mission, LISA Pathfinder, has been developed for this reason, as a

technology demonstrator and testing platform for the eLISA critical systems.

1.1.1 The LISA Pathfinder

Figure 1.2: Artist’s impression of the
LTP ©ESA

Figure 1.3: Artist’s impression of the
LISA Pathfinder spacecraft ©ESA

LISA Pathfinder mimics one arm of the LISA constellation, reducing its length from

5 million kilometres to 38 centimetres, while still keeping all the technology necessary
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for the actual mission. It will be launched in a Lissajous orbit around the Earth-

Sun L1 point, and it will stay there for a science operations nominal lifetime of 180

days. The core payload is the LISA Technology Package (LTP) built by Astrium with

the collaboration of several European institutes and companies. The payload contains

essentially all the technology required for the gravitational wave detection, as carried

out by LISA.

The implementation of the LISA Pathfinder spacecraft is now in its final phases, with

the launch being scheduled for 2015.

1.1.2 The eLISA Mission

Figure 1.4: Artist’s impression of one of
the three LISA spacecraft ©Airbus Defence

and Space

Figure 1.5: Schematic of one
year orbit of the LISA spacecraft

formation ©ESA

The eLISA mission will consist of a formation of three spacecraft, flying at the vertices

of a 5 million kilometres arm equilateral triangle, while following a heliocentric orbit.

It will directly measure gravitational waves by means of laser interferometry, measuring

variations of the optical path length between different spacecraft. Each one will carry

two Inertial Sensors, each including one free falling test mass which acts as a mirror for

the laser.

Through the use of suitably designed optical benches, Michelson-like interferometers are

formed, that allow measuring very small changes in optical path length, which in turn

correspond to very small changes of the relative distance between test masses 5 million

kilometres apart from each other.

The program was chosen as the L3 mission within the ESA Cosmic Vision Program,

with a tentative launch date in 2034.
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1.2 Previous Work

All the work that has been done to improve the TM capturing performances took as a

starting point the established experience and work done for the LISA Pathfinder mission.

The past contributions that were most involved in the process, the baselines that have

been either expanded or substituted, are now presented and briefly described.

1.2.1 The LISA Pathfinder Capacitive Actuation Algorithm

The Capacitive Actuation Algorithm [2] is a piece of software that converts the com-

manded forces and torques to be applied to the test mass, to voltages to be applied

to the housing electrodes (see figure 2.2). Such a conversion is not trivial because of

the position-dependent pull that is produced on the test mass by an electrode, when a

given voltage is applied. Moreover, saturation of the housing electrodes should always

be avoided.

The LISA Pathfinder actuation algorithm [2] is based on a Taylor expansion of order 0

of the Inertial Sensor capacitance model [3]. For this reason, the applied voltages result

in a “correct” (as-commanded) force only when the test mass is in its nominal position,

and the errors quickly grow as the displacements increase. For a 1mm displacement, the

actuated force is as low as 50% of the commanded one. Moreover, forces and torques have

to be applied separately, introducing a duty cycle in the actuation that effectively halves

the maximum obtainable forces and torques. As an additional consequence, during the

force half-cycle, some cross-coupling torque is produced, and during the torque half-

cycle, some cross-coupling force is produced, introducing further errors in the system.

1.2.2 The LISA Pathfinder Accelerometer Mode Controller

Due to the errors introduced by the Capacitive Actuation Algorithm, the design of

the LISA Pathfinder Accelerometer Mode controller (the one dealing with TM catching

after release) has been dominated by the need to be robust against system uncertainties.

For this reason, several controller designs have been investigated in the past, both by

Astrium [4] and ESA [5] with the selected one being a Sliding Mode controller. The

Sliding control provides a systematic approach to the problem of maintaining stability

and consistent performance in the face of modelling imprecision [6].

The main disadvantage of the Sliding Mode controller is that its design is still based on

a priori calculation of the minimum expected actuation gain. For the LISA Pathfinder

controller, this value has been computed as the ratio of the commanded force or torque
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versus the maximum possible actuation force/torque for the worst case displacement,

considering also cross coupling effects. This means that, while the actuator will never

saturate, it will only exploit its full capabilities when the worst case conditions occur.

The maximum possible actuation authority is not always exploited.

1.2.3 The Improved Capacitive Actuation Algorithm

In the scope of improving TM catching performances, a new Capacitive Actuation Al-

gorithm has been developed by Airbus Defence and Space and is presented in [7]. This

new algorithm is based on a first order Taylor expansion of the Inertial Sensor capaci-

tance model, therefore including informations on the test mass position and attitude in

the voltage calculation. The performances of this new algorithm are greatly improved

with respect to the original one [2]. The errors between commanded and actuated forces

and torques are essentially negligible for test mass displacements and attitudes of about

1mm and 10mrads respectively. The need for a duty cycle is removed, and the volt-

age application has been changed from alternate to continuous, effectively doubling the

maximum obtainable forces and torques. This actuation algorithm has been used as the

starting point for the development of the work presented in the thesis.

1.3 Motivation

Since it is of fundamental importance to properly catch the test mass using electrostatic

actuation, there is great interest in finding out the best possible way of accomplishing

such a task.

It also must be done within the given electronics hardware constraints, which represent

the state-of-the-art technology to provide voltages to the electrodes of the inertial sensor.

Using a higher electrode voltage would benefit operations by increasing the available

maximum force. However, three main components of the electronic setup are limiting

such an increase:

• The output transistors are required to have a breakdown voltage double the elec-

trode one (they operate between + and -). An additional margin of 2 is then taken

and as a result, no space qualified parts are now available that allow an increase

of the electrode voltages.

• The coaxial cable is also required to operate at the transistor breakdown voltage

(300 V) with a margin of 2. Most space qualified coaxial cables are now 600 V.
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• Actuation and sensing capacitors also have to operate at twice the operation volt-

age. Right now the limit in capacitor voltage is 250 V and since their quality plays

a very important role in the operations, the use of higher voltage ones with worse

performance is a problem.

Therefore the focus of this work will be on the definition of a control law that exploits

the existing hardware to its maximum possibilities: that means to stop the test mass

using all the force generated with the voltage amplitudes as provided by the currently

available Inertial Sensor electronics.

In the evaluation phase of the various designs, it should be clear where value is placed,

what the “best” controller should do better than the others. The clearly most important

figure of merit, given the premises, is the maximum overshoot.

There are several reasons for this: first of all, since the top-level goal is avoiding the test

mass from touching the housing, the smaller its displacement is, the better. Second,

since the electrodes can only pull, and their pull becomes weaker as the TM displace-

ment grows, it becomes more likely that the electrostatic force will not be sufficient to

stop it. Last, the inertial sensor capacitance model used in the non-linear simulation

environment for closed-loop verification is only an approximation, and the greater the

TM displacements grow, the greater the errors between reality and model will be, such

that it becomes unphysical for displacements bigger than 2 mm for x, 1.4 mm for y and

1.7 mm for z.

1.4 Thesis Contributions

The focus of this thesis is on the research of the control law that “best” performs in

terms of TM catching, within the existing hardware constraints.

In the scope of this, the limits of linear control have been explored, by developing and

comparing different designs: a simple position feedback PID controller, followed by a

full-state feedback controller. A reduced state observer and a Kalman filter have been

developed and compared to be used as state estimators for the state-space controller.

The best performing linear controller has been identified.

The idea of exploiting the maximum hardware capabilities of the system has then been

elaborated and a suitable nonlinear control law has been introduced.

The nonlinear control law always commands the maximum possible force to counter-

act the TM velocity. As a matter of fact, it is a bang-bang velocity controller whose
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output is not a fixed command value with positive or negative sign, but always request

the “maximum possible force” of given sign for current test mass position, and torque

command.

Since the “maximum possible force” has a position-dependent value, the Capacitive Ac-

tuation Algorithm [7] has been modified. The possibility to ask for a generic “maximum

command” with a certain sign has been included, producing a voltage command that

maximizes the actuated force based on test mass position and torque command. The

addition of this particular feature allows to avoid any a priori and conservative evalua-

tion of the maximum force that can be asked for, allowing the bang-bang controller to

effectively exploit the hardware to its limits, but not to exceed them.

Having the most effective velocity breaking control strategy (nonlinear switching, con-

troller with position and attitude dependent gain), a complete control strategy has been

proposed: after successfully breaking the test mass velocity with the nonlinear controller,

the test mass control law is switched to a linear controller, which then takes it back to

the nominal position.

An investigation of the highest TM release velocity that can be tolerated has then been

carried out, by running simulations with the best linear controller, and the nonlinear

one. The resulting values have been compared to the result of a simplified model, to

establish a performance parameter of the controllers.

Finally, the best performing controller has been implemented in the nonlinear LISA

Pathfinder End-to-End simulator, and its behaviour for various test cases has been

investigated.



Chapter 2

System Description

In this chapter, a mathematical description of the system to be controlled will be car-

ried out. First, the equations of motion for the TM inside its housing are derived by

considering the relative motion between TM and spacecraft, when both are affected by

gravity, disturbance and control forces. Then, an overview of the adopted electrostatic

actuation scheme is presented, explaining its main principles and limits. Finally, the

LISA Pathfinder Accelerometer Mode controller requirements are listed, because they

define the scenario in which the controller will have to operate.

2.1 Test Mass Dynamics

A full derivation of the test mass–spacecraft relative motion dynamics can be found in

the Appendix A.1. Only the final results are reported here, as they constitute the model

used in the controller design.

The equation for the test mass x degree of freedom writes:

ẍ1 = −Ω2
11x1 − uT xSC

− dSC xSC
+ z1(uT θSC

+ dSC θSC
)

− y1(uT ϕSC
+ dSCϕSC

) + uESx1 + dTM x1

(2.1)

Where:

• x1, y1, z1 are the test mass-spacecraft relative coordinates

• Ω2
11 is the test mass external stiffness

9
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x

z

Release plunger

Release plunger

TM

Figure 2.1: Test mass release plungers schematic

• uT q is the thruster force along the q coordinate direction

• dSC q is the external disturbance force acting on the spacecraft along the q coordi-

nate direction

• uES q is the electrostatic actuation force along the q coordinate direction

If the external disturbances on the spacecraft are assumed to be compensated using

thruster action, to a level where they are negligible with respect to TM external distur-

bances, the equation becomes:

ẍ = −Ω2
11x+ uESx + dTM x (2.2)

This shape of the equation of motion simply expresses the dynamics of a forced spring.

2.1.1 Release Direction

The test mass release mechanism is positioned inside the inertial sensor such that the

mechanical plungers which retain it in place retract along the z direction (see figure 2.1).

Due to this reason, the most critical degree of freedom for the test mass catching phase

is z. Along this axis the highest release velocities and displacements are expected, and

the actuating electrodes are smallest (due to the area occupied by plunger holes).
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2.2 Electrostatic Actuation

The inertial sensor houses a total of 18 electrodes, 12 of which are responsible for the

electrostatic actuation, while the remaining 6 are called “sensing” electrodes, and are

used to bias the test mass so that electrostatic sensing can be carried out. Figure 2.2

shows a schematic of electrode layout and numbering, and the coordinate system adopted

for all the work.

Figure 2.2: Inertial Sensor electrodes nomination and coordinates definition

2.2.1 Force Model

The actuation forces and torques on the test mass are obtained by applying voltages to

the housing electrodes. The electrostatic system comprising electrodes, housing and test

mass can be schematically represented as the network of capacitances and conductors

depicted in figure 2.3.
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Figure 2.3: Schematic configuration of IS conductors and capacitances

The general form of the electrostatic force/torque equation can be derived by energetic

considerations [3] and is given by:

Fq =
1

2

18∑
i=1

∂CELi,TM

∂q
(Vi − VTM )2 +

∂CELi,H

∂q
V 2
i +

∂CTM,H

∂q
V 2
TM (2.3)

With the TM potential being given by:

VTM =

∑18
i=1CELi,TMVi

Ctot
+
QTM
Ctot

(2.4)

where QTM stands for the test mass charge, and the total capacitance Ctot can be

expressed as:

Ctot = CTM,H +
18∑
i=1

CELi,TM (2.5)

The notation q stands for generalized coordinate, Vi is the i-th electrode voltage (in

principle also the sensing electrodes must be accounted for), CELi,TM the i-th electrode

to TM capacitance, CELi,H the i-th electrode to housing capacitance, and CTM,H the

test mass to housing capacitance.

In the following, it is assumed that the system will always operate using the Improved

Actuation Algorithm. The simplifications introduced with this assumption make easier

to understand the underlying principle and its limits.

In the Improved Actuation Algorithm, the 12 electrodes are separated in three sets of 4,

each of which provides actuation along 2 TM coordinates. For example, electrodes 1 to

4 operate x force and φ torque. This is a consequence of the fact that an electrode can
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only pull the test mass towards its surface. Therefore, to obtain a force along x, one will

need to use electrodes whose surfaces are normal to the x direction. At the same time,

to rotate around φ, one will need to use a suitable set of either x or y directed forces.

Due to the Inertial Sensor arrangement, only x electrodes have the layout required to

produce a φ torque. Figures 2.4 and 2.5 illustrate the test mass, focusing on the x/φ

electrodes layout. The separation of electrodes in different subsets is only possible if the

test mass voltage is assumed to be zero [7]. The associated system of equation then is

[7]:

Fx =
1

2

4∑
i=1

aiV
2
i (2.6)

Fϕ =
1

2

4∑
i=1

biV
2
i (2.7)

VTM =
4∑
i=1

ciVi = 0 (2.8)

x

y

φ

EL 5, 6

EL 1

EL 2

EL 4

EL 3

EL 7, 8

F1

F2

Fx

Figure 2.4: Positive x force genera-
tion

x

y

φ

EL 5, 6

EL 1

EL 2

EL 4

EL 3

EL 7, 8

F1

F3

Fφ

Figure 2.5: Positive φ torque gener-
ation

Another important characteristic of the electrostatic actuation is that, for a given elec-

trode voltage, the pull exerted on the test mass decreases as the distance separating the

electrode and test mass surfaces increases, as illustrated in figure 2.6.

A direct consequence of these two facts is that any restoring force (one that accelerates

the test mass toward the nominal position) will always have to be generated by the least

effective electrodes. For example, to counteract a positive x displacement, one should

activate the electrodes 3 and 4, which for the same voltage generate a smaller force

than electrodes 1 and 2. However, while electrodes 1 and 2 can generate a higher force,
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x

y

φ

EL 5, 6

EL 1

EL 2

EL 4

EL 3

EL 7, 8

F1

F2F3

F4

Fx

Figure 2.6: Electrodes pull dependence on TM displacement

they cannot generate one of the required sign (they cannot “push”). This concept is

illustrated in figures 2.7 and 2.8 for force and torque respectively. The dashed arrows are

shown to emphasize the concept that the electrodes which are not used could produce

a greater force than the ones that must be used.

x
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φ

EL 5, 6

EL 1

EL 2

EL 4

EL 3

EL 7, 8

F3

F4

Fx

Figure 2.7: Positive x force genera-
tion

x

y

φ

EL 5, 6

EL 1

EL 2

EL 4

EL 3

EL 7, 8

F4

F2

Fφ

Figure 2.8: Positive φ torque gener-
ation
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2.3 Summary of Operating Conditions

The whole problem of catching the test mass originates from the imperfection of the

release mechanism. An ideal system would release the test mass in its nominal position,

with zero velocity. A real system however cannot achieve perfect performance, and

thus some requirements on the test mass position, attitude, residual linear and angular

velocities after TM release into free flight have been defined. The task of catching

the test mass after release essentially consists of removing the residual velocities and

taking the mass back to a region close to the nominal position. The catching phase is

completed when the TM states (position, attitude, velocities) are within specified steady

state requirements.

The requirements specified for the LISA Pathfinder mission in [8] have been adopted as

a baseline for the design process. They are listed in the following section.

2.3.1 Test Mass Initial States

Test Mass State Initial Value

Linear velocity, relative to test mass housing ±5 · 10−6m/s
Rotational rate, relative to test mass housing ±1 · 10−4rad/s
Displacement with respect to test mass housing ±200µm
Attitude with respect to test mass housing ±2mrad

Table 2.1: Test Mass initial conditions after release

2.3.2 Maximum overshoots

• Maximum linear displacement overshoot: <1 mm;

• Maximum rotation overshoot: <10 mrad.

2.3.3 Control Accuracy (transition to steady state)

Test Mass State Control Accuracy

Linear velocity, relative to test mass housing < 1 · 10−6m/s

Rotational rate, relative to test mass housing < 1 · 10−5rad/s

Displacement with respect to test mass housing < 25µm

Attitude with respect to test mass housing < 100µrad

Table 2.2: Test Mass control accuracy requirements
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2.3.4 Disturbance Estimates

An estimate of the worst case external disturbances acting on the test mass (the dTMx)

term in equation 2.2) has been carried out in [9]. The absolute values of the total

disturbance forces for each degree of freedom, as derived in [9], are listed in tables 2.3

and 2.4, first as accelerations and then as forces and torques.

Abs. value of max. disturbance forces (m/s2) Abs. value of max. disturbance torques(1/s2)
x y z θ η φ
2.4 · 10−8 4.3 · 10−8 9.4 · 10−8 3.3 · 10−8 3.1 · 10−8 2.4 · 10−8

Table 2.3: Disturbance estimates, linear and angular accelerations

Abs. value of max. disturbance forces (N) Abs. value of max. disturbance torques(Nm)
x y z θ η φ
4.7 · 10−8 8.4 · 10−8 18.5 · 10−8 22.6 · 10−12 21.7 · 10−12 16.3 · 10−12

Table 2.4: Disturbance estimates, forces and torques

The force and torque values of the estimates have been calculated by multiplying their

respective accelerations values by the mass (1.96 kg) for the forces, and by the moment

of inertia (6.912 · 10−4 for all axis) for the torques.

2.3.5 Definition of Nominal Conditions

The nominal conditions for testing in the different simulator are defined.

2.3.5.1 Simplified Simulator

The “nominal conditions” for testing in the simplified simulator are defined as in table

2.5.

Position Attitude Lin. Velocity Rot. Velocity
TM1 +200µm +2mrad +5µm/s +100µrad/s

Table 2.5: Nominal Release Conditions for Simplified Simulator

The applied disturbance forces are the ones defined in Table 2.3, always taken with a

positive sign.

2.3.5.2 End to End Simulator

The “nominal conditions” for testing in the nonlinear End to End Simulator are defined

as in table 2.6:
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Position Attitude Lin. Velocity Rot. Velocity
TM1 +200µm −2mrad +5µm/s −100µrad/s
TM2 −200µm +2mrad −5µm/s +100µrad/s

Table 2.6: Nominal Release Conditions for End to End Simulator

The disturbance forces are generated by the simulator models and are therefore not easily

identified. The main one is the solar radiation pressure and for nominal conditions it

is assumed as producing a 24µN force on the spacecraft, compensated by the thrusters

with a 20% underestimation error (corresponding to a compensation of 19.2µN).



Chapter 3

Design and Analysis of Linear

Control Methods

In this chapter, the design of several linear control laws is presented, and their per-

formances are compared to establish the “best” one. First, a simple PID design is

illustrated, followed by two full state feedback controllers. A Kalman filter is then cho-

sen as state estimator, its alternative being a reduced state observer whose performance

is clearly inferior to the Kalman filter. Finally, a comparison between the PID controller

and the best among the two state feedback controllers is carried out, and the state space

controller implemented with a Kalman filter (resulting in an LQG) is accepted as our

“best” linear controller.

3.1 PID Controller

As a starting point for the design and comparisons of linear controllers, a simple position

feedback PID controller has been derived for each degree of freedom.

A PID controller is defined by its 3 gains: KP , KD and KI . In this work, the gains

have been derived by using a technique tailored to the specific case. The gains are built

such that a set fraction of the maximum actuation is used when facing worst case initial

conditions. The idea behind the derivation is given here, for the full derivation refer to

Appendix B.

The Laplace transform of the closed-loop controlled system free response (zero reference

signal and nonzero initial conditions) is:

X(s) =
s2x0 + s (ẋ0 +KDx0) + d

s3 +KDs2 + s
(
KP + Ω2

11

)
+KI

(3.1)

18
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The closed-loop controlled system has three poles, and the denominator can be written

as the product of a real pole and a complex conjugate pair:(
s+ 1/τ

) (
s2 + 2ξωns+ ω2

n

)
(3.2)

Where τ is the first order characteristic time, ωn is the second order dynamics natural

frequency and ξ is its damping ratio. By expanding and comparing this to the former

writing of the denominator, the gains can be written as:

KD = 1/τ + 2ξωn (3.3)

KP + Ω2
11 =

2ξωn
τ

+ ω2
n (3.4)

KI =
ω2
n

τ
(3.5)

The condition that the system must use a set fraction of the maximum available actua-

tion when facing the worst case initial conditions writes:

u (0) = KPx0 +KDẋ0 = uc (3.6)

Where uc is the chosen portion of total available actuation authority.

The system composed of the above equations can be solved for all the unknowns by

making suitable assumptions on the required system dynamics.

This method, while being useful in terms of capture performance (due to the ability to

choose the amount of command to use at a given initial condition) is lacking with respect

to the classical bandwidth and gain/phase margins considerations, since the controller

derivation is not based on such properties.

The resulting controllers for the various degrees of freedom have been calculated with the

available data (e.g. external stiffnesses, maximum actuation authorities...) and resulted

in good margins performances. The Bode plots and the minimum margins for the z and

η controller are shown in figures 3.1 and 3.3, and tables 3.2 and 3.1.
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Figure 3.1: PID controller, z Bode plots

Gain margin [dB] ωc [rad/s] Phase margin [deg] ω180 [rad/sec]

-19.0 0.010 71 0.054

Figure 3.2: PID controller, z margins
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Figure 3.3: PID controller, η Bode plots

Gain margin [dB] ωc [rad/s] Phase margin [deg] ω180 [rad/sec]

-26.4 0.013 75 0.12

Table 3.1: PID controller, η margins
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While the derivations have been (and will continue to be) referred to the x degree of

freedom (mainly for a notation habit), all performances and controller characteristics

such as margins will be done for the z and η degrees of freedom. Two axes are shown so

the performances for both translational and rotational DoF controller can be examined.

Among the various axes, the z and η ones are chosen because for the studied system,

they happen to be the most critical couple.

3.1.1 Unfiltered PID Controller

The derived controller was tested, and showed very limited steady state performances.

The problem originates from the derivative calculation of a noisy measured position

signal, resulting in very high command noise, which for the rotational DoF prevents the

controller from achieving the required steady state performances. Figure 3.4 shows the

η dof time history, and figure 3.5 shows the corresponding command signal.
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Figure 3.4: PID controller, η performance
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Figure 3.5: PID controller, η torque control signal

3.1.2 Filtered PID Controller

To eliminate the problem of the noisy position signal, a low-pass filter has been added

to the feedback loop. The new block diagram for the system is shown in figure 3.6

P.I.D.
L.P. 

filter

n

y

+

+

-
r Ge u

+

Figure 3.6: System block diagram with filter

The filter cutoff frequency is chosen such that the Bode diagrams of the open-loop

system (L = G ·K) are left unchanged inside the controller bandwidth. For all degrees

of freedom, the cutoff frequency has been chosen as 1 rad/s. The new Bode diagrams
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and the corresponding system margins, are shown in figures 3.7 and 3.8, and tables 3.2

and 3.3.

From figures 3.7 and 3.8 one can verify that inside the controller bandwidth the frequency

response of the system is left unchanged. The stability margins as well are left essentially

unchanged.

One drawback of the filter addition is that the overall system transfer function is modified

(an additional pole is introduced), resulting in a mismatching between design and actual

(simulated) maximum command fraction.

Simulation results show that the magnitude of the error is anyway not big enough to

cause significant saturation issues. Even though the design command fraction is not

obtained anymore, it still works as a guideline of what the real command signal will be.

Decreasing the required command fraction also decreases the resulting command signal.
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Figure 3.7: Filtered PID controller, z Bode plots

Gain margin [dB] ωc [rad/s] Phase margin [deg] ω180 [rad/sec]

-18.8 0.010 68 0.054

Table 3.2: Filtered PID controller, z margins
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Figure 3.8: Filtered PID controller, η Bode plots

Gain margin [dB] ωc [rad/s] Phase margin [deg] ω180 [rad/sec]

-26 0.014 67.8 0.12

Table 3.3: Filtered PID controller, η margins
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The controller has then been tested in a simplified simulator, which included only a

partial inertial sensor model and no spacecraft nor environment models, and showed

much better performances with respect to the unfiltered one. However, a 6 seconds

delay in the control activation had to be introduced to allow stabilization of the filter

output (see the filter step response in figure 3.9).
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Figure 3.9: Lowpass Filter Step Response

The plots of the command signal in figure 3.10 clearly show the vast improvement in

terms of command noise given by the introduction of the low pass filter. Figure 3.11

shows the resulting η dynamics achieving steady state conditions.
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Figure 3.10: Filtered/Unfiltered PID Torque Command Comparison
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Figure 3.11: Filtered/Unfiltered PID η Dynamics Comparison
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3.2 State Space Controller

Once the PID controller with just position feedback has been completed, a time domain,

or state space approach to the control problem is considered.

The idea is to use full state feedback to improve the performances of the system, mainly

through exploitation of velocity signal feedback.

As in standard approach, thanks to the separation principle, first the controller design

is carried out by assuming that the full state feedback is available, and then a proper

estimator is designed to provide the actual state estimation feedback to the controller

itself.

The matrix form of the equations of motion for one single degree of freedom, is derived.

The x degree of freedom is still taken as example for the derivation.

In scalar representation, the equation of motion writes:

ẍ = −ω2x+ u+ d (3.7)

Where u is the control signal, and d is the DC disturbance acceleration. Going to the

matrix representation:{
ẋ

ẍ

}
=

[
0 1

−ω2 0

]{
x

ẋ

}
+

[
0

1

]
u+

[
0

1

]
d (3.8)

Assuming the position x to be the output of interest, the following state-space represen-

tation matrices can be identified:

A =

[
0 1

−ω2 0

]
; B =

[
0

1

]
;C =

[
1 0

]
;D = 0 (3.9)

The presence of the disturbances d prevents adoption of a proper, “clean”, state-space

representation. The problem of dealing with the disturbances can be solved by adopting

two different strategies:

• Completely ignore the disturbances, and add an integrator to the controller, such

that the system steady state error will be zero, whatever (within realistic limits)

the disturbances are;

• Substitute the actual command signal with a fictitious one, called u′, defined as

u + d, so that by pre-compensating the disturbances, a “clean” representation is

recovered.
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Both alternatives have been investigated, and the pre-compensated one, being based on

a lower-order model, was found to be faster and better damped than the integrator one.

For this reason, the full implementation of the controller (complete with state vector

estimator) has been carried out only for the pre-compensation strategy.

However, both control strategies are illustrated for the z degree of freedom, and their

performances are compared assuming perfect state vector feedback.

3.2.1 Addition of an Integrator

The d term is here assumed as a disturbance introduced in an otherwise “pure” system;

therefore it is neglected in the equations, and an integrator is added to avoid steady

state errors [10].

Figure 3.12 shows the block diagram of the system, with the addition of an integrator.

r

-K

1/s -KI

+

+

-
y

+

Ixe  Ix 1/s

A

B C
x x

+

+u y

Figure 3.12: System block diagram with integrator

The matrix equations for the system then write:

ẋ = Ax+Bu (3.10)

y = Cx

ẋI = r − y

u = −Kx−KIxI
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By extending the state vector with the additional state xI , the system can be written

in an equivalent state space form:{
ẋ

ẋI

}
=

[
A 0

−C 0

]{
x

xI

}
+

[
B

0

]
u+

[
0

1

]
r

(3.11)

y =
[
C 0

]{ x

xI

}

With no reference signal, the above description matches exactly that of a “pure” state

space representation. The controller gain vector
[
K KI

]
is then obtained using the

LQR technique, which means, minimizing the cost function:

J =

∫ t

0

{
x

xI

}
Q

{
x

xI

}T
+ uRuTdτ (3.12)

The Q and R matrices are defined in the following way:

Q =


1
/
x2max

0 0

0 0 0

0 0 k1

 ; R =
k2
u2max

(3.13)

With k1 and k2 being factors used to tune the controller itself. The xmax and umax

parameters are taken as, respectively, the maximum allowed overshoot and the maximum

command that can be actuated at the zero position.

Once the controller gains are known, the overall system, from reference to output, is

described by the following representation:{
ẋ

ẋI

}
=

[
A−BK −BKI

−C 0

]{
x

xI

}
+

[
0

1

]
r

(3.14)

y =
[
C 0

]{ x

xI

}

The choice of the parameters k1 and k2 is done on a trial and error basis, starting with

a value of 1 and adjusting them according to the guidelines that:

• Changing k1 mostly affects the time response (a smaller k1 means smaller integral

contribution, therefore slower convergence);
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• Decreasing k2 increases the magnitude of the command signal

The gains for the controller shown in the comparison of section 3.2.3 have been derived

with the following values for the parameters:

• k1 = 50

• k2 = 0.35

and resulted in the following gains:

• K =
[

0.0013 0.0502
]

• KI = −6.7172 · 10−6

3.2.2 Pre-Compensation

The disturbance term d is here assumed to be a constant offset in the command signal;

the equations can be written using a new notation:

ẋ = Ax+Bu′

y = Cx (3.15)

u′ = u+ d

The controller is, like in the previous case, derived by using the LQR technique, using

the following weight matrices:

Q =

[
1
/
x2max

0

0 0

]
; R =

k

(umax − d)2
(3.16)

The R matrix must take into account the limitations on the actual command, even

though it is acting as a weight on u′ = u+ d.

The maximum (absolute) value that u can assume is umax. Therefore, the maximum

(absolute) value that u′ can assume must take into consideration the possibility of a

command whose sign is opposite to the disturbance one. The limit is then u′ ≤ umax−d.

The k factor is, again, used to tune the controller. The value of k is chosen such that the

system does not saturate. This tuning is carried out on a trial and error basis, following

the guideline that decreasing k will increase the command signal magnitude.

The gains for the controller shown in the comparison of section 3.2.3 have been derived

with the following values for the parameters:
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• k = 0.17

and resulted in the following gains:

• K =
[

0.0011 0.0477
]

Once the controller gains are defined, in order to obtain the actual command signal by

having the simplified one, the definition is inverted:

u = u′ − d (3.17)

The u command is finally the one that is commanded to the electronics.

The disturbance factor to be subtracted from the simplified command must be somehow

assessed. It will be done by designing a proper state estimator, which takes into account

the DC disturbances as a third state.

3.2.3 Choice of State-Space Control Law

A controller example for the test mass z degree of freedom was implemented with both

strategies that have been introduced in the previous sections. Both resulting controllers

were tuned to be essentially equivalent in command signal usage. Plots showing the

displacements and command for both controllers are shown in figures 3.13 and 3.14.

The pre-compensated strategy, being based on a lower-order model, shows a faster and

better damped time response. Its tuning is also simpler, being limited to the adjustment

of one single parameter. For these reasons, the design process has been continued only

for the pre-compensated controller.

3.2.4 State Estimator Design

The assumption of having a full-state feedback, on which the above controller designs

are based, must be verified by designing a state estimator which can provide an accurate

estimation of the system state vector to the controller.

The state estimator, however, will have to provide not only estimation of position (which

is anyway available as measurement) and velocity, but also force and torque disturbances

(usally called DC disturbances), for use in the determination of command offset for pre-

compensation.

Two estimator designs have been considered and carried out:
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Figure 3.13: Compensation strategies, displacements
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Figure 3.14: Compensation strategies, command
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• A reduced state observer, based on the one already designed for the LISA path-

finder DFACS controller [4];

• An unsteady Kalman filter;

In order to be able to carry out estimation of the DC disturbances, both estimators are

based on a three-state model of the system, in which the third state is the DC force

itself. The matrix equations for this representation of the system write:
ẋ1

ẋ2

ẋ2

 =


0 1 0

−ω2 0 1

0 0 0




x1

x2

x3

+


0

1

0

u
(3.18)

y =
[

1 0 0
]

x1

x2

x3


With the following notation:

x1 = x

x2 = ẋ

x3 = d

(3.19)

equation 3.18 becomes equivalent to the original system model. Please note that this

representation could not be used to derive a controller design, since it can be shown that

the controllability matrix for such a system is singular (the third state is not controllable;

it has no connection to the input).

Starting from this system representation, the two estimators are derived.

3.2.4.1 Reduced State Observer Design

The reduced state observer examined for the present controller design is derived by

standard approach [10]. For its complete derivation see Appendix C.1. Its main charac-

teristic is that the estimate is limited to the states which are not readily available (the

position is therefore not estimated).

For the specific case, the design parameters upon which the gain vector is derived are:

• the observer dynamics damping ratio

• the observer settling time
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The damping ratio ξ is chosen to be 1 to obtain well-damped dynamics.

Imposing a short observer settling time (i.e. making the system fast) results in a noisy

state estimate. On the other hand, making the system slow allows for more noise rejec-

tion at the cost of a longer convergence time.

A settling time of 10 seconds has been chosen. This results in a rather fast observer (the

slowest state estimate to reach steady state takes about 30 seconds) that however does

not show great noise rejection properties, especially on the third state estimate.

3.2.4.2 Kalman Filter Design

The Kalman filter can be described as an algorithm that uses a succession of measure-

ments of some quantity, corrupted by noise, to produce an estimate of some unknown

variables.

The Kalman filter is an interesting estimator for the present case, due to the fact that

both the taken measurements, and the applied command, are corrupted by some un-

certainties and noise. It is then desirable to employ such an estimator, to obtain good

noise rejection characteristics without having to wait a long time for the initial estimate

to converge.

Fundamentals of Kalman filtering can be found in a number of optimal estimation text-

books ([1], [11]). The derivation process of the Kalman filter used for the studied system

is reported in Appendix C.2. The main difference between a Kalman filter and a reduced

state observer is that the KF is a time-variant system. It can be identified as a filter

whose speed is initially determined by the error covariance matrix initial conditions,

and settles in time to one whose speed is determined by the noise model of the system.

While this characteristic has great advantages (very short convergence time due to fast

filter at initialization, followed by great noise rejection due to slow filter at steady state)

it also has its drawbacks, mainly in implementation difficulties.

3.2.4.3 Choice of State Estimator

To provide the controller with an estimate of the system state vector, the Kalman filter

has been chosen as the best state estimator for our purposes. This choice is based on

the fact that the KF has faster initial dynamics than the observer (reaches more quickly

the correct estimate) while still having better noise rejection properties at all times of

interest (after controller activation). Moreover, the KF allows us to introduce in the

estimating procedure the informations we have about the system uncertainties.
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3.2.5 Complete State Space Controller

The combination of a Kalman filter and a control law based on LQR gains constitutes

a Linear Quadratic Gaussian regulator (LQG).

The controller is based on the pre-compensation strategy. The tuning was carried out

after implementation with the KF, so it could be tailored to the filter settling time.

The controller cannot be activated before the estimates are available, i.e. the filter has

settled. Therefore, there will be some free-drift time during which the worst-case initial

conditions will evolve to some different states. The controller is then tuned such that

even with worst case IC, after the free drift time, a relevant portion of the command is

exploited while still avoiding saturation.

The resulting k parameters are:

• k = 0.6 for the z degree of freedom;

• k = 0.6 for the η degree of freedom;

Since the highest demand for command signal is at controller activation (displacement

and velocity initial conditions plus system evolution during drift time), changing the

activation time might require further tuning of the controller to either avoid saturation

or better exploit the system actuation capabilities.

3.3 Best Linear Controller

The performance of the previously derived PID and LQG controllers are compared, to

assess which one should be selected as the “best” linear controller for the studied system.

For both implementations, first position control performances are presented, and then

the related command signals are shown. As usual, the z DoF is reported as representa-

tive of the translational degrees of freedom, while the η one stands for the rotational.

From comparison of the simulation results for the two controllers, the following state-

ments can be made:

• The PID controller has a slightly reduced maximum overshoot with respect to

the LQG one on the rotational DOF. This is mainly due to the greater command

signal at control activation. The particular derivation of the PID gains allows

easy modification of the maximum commanded forces/torques, therefore obtaining

a very good release velocity breaking performance. The use of weight matrices

to tune the LQG controller does not allow such an easy control over the initial

command.
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• The LQG controller shows an overall faster dynamics to reach both steady state

and zero position conditions, due to the fact that is based on a lower order model.

Additionally, though not being a really significant effect, the PID command signal

is noisier than the LQG one.

The overall best linear controller has been selected to be the LQG one. The reason for

this choice is that, while the maximum overshoot of the two controllers is almost the

same, the time it takes them to settle to steady state is different, clearly favoring the

LQG controller (about 150 vs 180 seconds for the z DOF, 150 vs 240 seconds for the η

one).
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Figure 3.15: PID vs LQG comparison, Test Mass position
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Figure 3.16: PID vs LQG comparison, force control signal
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Figure 3.17: PID vs LQG comparison, test mass attitude
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Figure 3.18: PID vs LQG comparison, torque control signal



Chapter 4

Design and Analysis of Nonlinear

Control Methods

In this chapter, the design process of a nonlinear controller for the system is illustrated.

First, the reasons that suggest the exploitation of a nonlinear law are presented, together

with the idea of what kind of control law should be employed. Then, the development

of the actuation algorithm needed to implement the control law is presented. Finally,

the resulting nonlinear controller is illustrated together with its performance.

4.1 Motivation and Strategy

The ideal controller should, as quickly as possible, stop the test mass drift after release

(i.e. reduce the TM velocity from the initial value to 0). The key feature of such a

controller should be the application of the highest possible electrostatic force, which

will result in the shortest breaking time and the smallest possible maximum overshoot.

Ideally the controller shall counteract the residual release velocity applying always the

maximum force, and stop as soon as the mass velocity is zero. It is clear that this kind

of control cannot be achieved by using a linear law, as no linear law abruptly changes

the command signal between different values. For this reason, the design of a nonlinear

control law has been investigated. The control law that reduces the velocity to zero in

the minimum possible time is simply a bang-bang velocity controller:

v̇ = −umaxsign (v) (4.1)

This first-order nonlinear control law can be shown to be always stable (Theorem 4.4,

[12]). For the specific system case, however, the equation of motion has some additional

41
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terms. Focusing on the velocity, and neglecting the stiffness contribution, which is much

smaller than both the DC disturbances and the actuation force1, the following equation

is derived:

v̇ = −umaxsign (v) + d (4.2)

For the stability to hold, the term on the right hand side must switch sign at the

velocity (v) zero crossing, which means that the umax quantity must be greater than the

DC disturbance.

•

{
v = 0− δv
|umax|+ d > 0

•

{
v = 0 + δv

− |umax|+ d < 0

Assuming a positive sign for the d term, the first condition is always met. On the other

hand, the second one requires |umax| > d (the same conclusion could be derived by

assuming negative d and thus automatically veryfing the second condition but not the

first). In the case where the maximum available actuation was smaller than the DC

disturbance, there is no possibility to stop the velocity, therefore leading to instability

of the system.

The fact that the umax value for our system is position dependent introduces some

additional complications for this kind of reasoning; however, the main point is un-

changed: if enough electrostatic actuation authority is available, then the control law

v̇ = −umaxsign (v) + d exploits (by definition) the maximum possible command, and is

therefore the best control law to stop the TM velocity as fast as possible, with minimum

overshoot.

4.2 Development of Maximum Force Actuation Algorithm

In order to implement the control law presented in the section above, knowledge of the

value of the maximum actuation authority umax is required. Due to the nature of the

employed electrostatic actuation, the limit on electrode voltages (±130.1 V) turn into a

position-dependent limit on the maximum forces and torques that can be generated. The

actuation algorithm in use [7] exploits position readings to compute, using a first order

Taylor series approximation of the analytical force equation as described in [13], for each

set of electrodes, the voltages resulting in the required force and torque commands. What

is needed to implement the nonlinear control law is an actuation algorithm that, based

1
∣∣Ω2

11xmax

∣∣ ∼= 1 · 10−9 m
s2

� d = 2.4 · 10−8 m
s2
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on position readings and torque command, computes the voltages resulting in maximum

actuated force, and the value of the maximum force itself. The torque command is a

required input because the same set of electrodes are used for both force and torque

generation, therefore the computation of the voltage commands for each electrode set

must take into consideration both force and torque commands (or, in this case, the

torque command and the maximization of force).Such an actuation algorithm has been

developed, and is outlined below. For more details on the derivation process, refer to

Appendix D.1.

4.2.1 Concept of Maximum Force Actuation Algorithm

Assuming the required goal to be the maximization of positive actuated force for a

given torque input, the algorithm is derived by solving the following problem for the

four voltages:

Fx = max

[
1

2

4∑
i=1

aiV
2
i

]
Vi

(4.3)

Fϕ =
1

2

4∑
i=1

biV
2
i (4.4)

VTM =
1

2

4∑
i=1

ciVi (4.5)

A mathematically correct way to solve this problem would involve zeroing the derivative

of the force with respect to the voltages. Such an approach however, can be shown to be

impractical (it involves finding roots of 6th order polynomials, for which no closed form

solution exist), and not suitable for on-board implementation. Therefore, the equation

system is analyzed with a more practical approach, taking advantage of the nature of

the coefficients signs. The a, b and c coefficients are capacitances and their derivatives

(see equations 2.3 and 2.4) expressed according to the adopted capacitance model [7].

Fx =
1

2

(
|a1|V 2

1 + |a2|V 2
2 − |a3|V 2

3 − |a4|V 2
4

)
(4.6)

Fϕ =
1

2

(
|b1|V 2

1 − |b2|V 2
2 + |b3|V 2

3 − |b4|V 2
4

)
(4.7)

VTM = c1V1 + c2V2 + c3V3 + c4V4 = 0 (4.8)

This particular form of the equations can be used to develop a preliminary force-

maximizing strategy. The ideal approach is to maximize V1 and V2, while zeroing V3

and V4. However, doing so while still satisfying the third equation, would result in some

position-dependent output torque different from the command torque. It is therefore
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necessary to have at least one other voltage different from zero.

By looking at the V3 and V4 coefficients, it becomes clear that, while both contribute to

a negative force, V3 provides positive torque contribution, while V4 provides a negative

one. Following this consideration, the additional non-zero voltage can be chosen on the

basis of the input torque sign: the V3 voltage is chosen when requiring a positive torque;

the V4 voltage when requiring a negative torque.

Having chosen the triplet of voltages for which we want to solve the problem described

by equations 4.6 to 4.8, it is assumed that, being a1 and a2 both positive, the maximum

force will be obtained when either V1 or V2 assumes the maximum allowed magnitude

(130.1 V).

To find, e.g., the maximum positive force for a given positive torque, the algorithm is

then the solution to the above problem, for the special case:

• V4 = 0;

• Either |V1| or |V2| = 130.1 V;

• Fϕ ≥ 0, given.

4.2.2 Torque Limitation

The above described actuation algorithm is implemented as an expansion of the existing

improved one [7]. Its goal is providing the highest possible force of the required sign,

for the measured test mass position and attitude, while at the same time producing the

commanded torque. The main difference with respect to the algorithm described in [7]

is that in the new one, at least one voltage always assumes maximum magnitude. For a

given test mass displacement, a higher force is produced the lower the torque command

is. This happens because to produce a torque, an electrode which gives negative force

contribution is always activated. For this reason, to better exploit the new algorithm,

the requested torque should be limited to a low value while a maximum force is com-

manded. This particular feature should be taken into consideration when designing the

control strategy, in terms of test mass attitude control gains.

An evaluation of the minimum torque command required to avoid the maximum over-

shoot, for different release attitudes and rates has been carried out, and its details can

be found in Appendix D.2. The result has been that for an initial attitude and rates

as defined in table 2.1, the maximum overshoot can easily be avoided. A final torque

limit of 5 nNm was chosen. This is now considered as a requirement in the TM attitude

controller design, while operating with the nonlinear controller.
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4.3 Design of Nonlinear Controller

A different nonlinear control strategy is applied to the linear and to the rotational degree

of freedom.

The force control strategy is composed of two parts:

• The nonlinear velocity breaking controller (eq 4.2), which guarantees the most

effective breaking of the test mass within hardware limits;

• A linear controller, to control the test mass from the position where the breaking

has been completed back to the zero position.

The torque controller strategy consists of the same linear control law, calculated using

two different set of gains depending on the force control:

• A high gain controller, designed for nominal maximum torque limit, to be used

when the force controller is operating with its linear control law;

• A low gain controller, designed for the reduced torque limit, to be used when the

force controller is operating with its velocity breaking control law.

Two different control laws are required because during velocity breaking the commanded

torque needs to be limited to the 5 nNm value, while during linear force control such

limit is unjustified and therefore the appropriate DOF limit is assumed.

The velocity breaking law has been slightly modified in order to:

• Avoid control chattering due to uncertainties and noise in the velocity estimate: a

velocity threshold has been defined, such that a velocity estimate below it causes

the control to be handed over to the linear law;

• Avoid slowing the test mass path trajectory to the zero position: the velocity

breaking is activated only if the signs of measured displacement and velocity are

the same, meaning the mass is drifting away from the nominal position. This way,

a high velocity towards the nominal position is not necessarily counteracted, but

handled by the linear controller, allowing for a faster settling of the dynamic.

The diagrams in figures 4.1 and 4.2 show the control switching logic respectively for

force and torque controllers. Due to the various switching involved (in command sign,

control laws and gain sets) in the defined controller, it was labeled as the “Variable Gains

Switching” (VGS) controller, or shorter “Switching” controller. A particular feature of
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switching logic
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Figure 4.2: Nonlinear torque control
switching logic

the nonlinear velocity breaking controller is the absence of a magnitude command (the

output of the breaking controller is a +/- sign, the maximum force actuation algorithm

then carries out the maximization of the force based on current TM position and torque

command). Thus, a corresponding force command as input to the state estimator (the

Kalman filter for our case) is needed. The problem has been addressed by introducing

an additional output to the actuation algorithm, which carries out the calculation of

the actuated force based on the actuated voltages. However, due to the use of a first

order capacitance model in the calculations, large displacements lead to large errors in

the calculated force and therefore large errors in the estimator input. More details on

this problem can be found in Appendix D.3.



Chapter 5

Comparison of Best Linear versus

Nonlinear Control Strategy

The performances of the LQG controller versus the Switching controller were tested in

the simplified simulator (partial inertial sensor model, no spacecraft and no environment

models). In this chapter, test results of the performance adopting nominal case initial

conditions (as in section 2.3.5.1, essentially the LPF release conditions) are presented.

After the two controllers have been compared adopting nominal requirements, the result

of further testing is presented, showing the behavior for initial conditions exceeding the

requirement limits. This is done in order to assess the maximum release velocity tolerated

by the system within given constraints.

The resulting values of the maximum tolerable release velocity are then compared to

an energy-based evaluation of the same quantity. The comparison of simulation versus

ideal results is taken as a performance index for the controller.

5.1 Performance Comparison

5.1.1 Testing of the LPF Requirements Release Conditions

In figures 5.1 through 5.4 the compared performance of the LQG controller and the VGS

one are shown. The simulations are run adopting worst case initial conditions (maximum

initial displacement and velocity, of the same sign) and maximum disturbance force and

torque, of the same sign as initial displacement and velocity (see section 2.3.5.1).

The maximum overshoot on the translation degree of freedom (z) is reduced with respect

to the linear controller (due to the increased applied force), while the one on the rotation

degree of freedom is increased (due to the limit on applied torque).

47
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For this particular test case, the nonlinear controller shows only a marginal increase in

performance with respect to the best linear one. This is due to the fact that in the

simulation, TM initial conditions according to the LPF release requirements were set,

exactly for which the linear controller has been tuned.
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5.1.2 Velocity Limit Testing

Figures 5.5 through 5.8 show the results of simulations conducted to explore the limits

of both controllers.

The goal of the test is to assess what is the highest release velocity that each controller

can cope with while keeping the maximum displacement within the 1mm limit. Since the

results of this test are to be later compared with a simplified energy based calculation

of the physical limit of the system, some special conditions were adopted:

• All initial displacements are zero;

• All initial velocities are zero, except the z one;

• All disturbance forces are zero;

• All external stiffnesses are zero;

• No measurement and no actuation noise is present;

• The controller is initialized with no delay (the lack of noise allows for an essentially

instantaneous convergence of the Kalman filter);

The velocity limit is considered to be reached when the maximum overshoot is greater

than 1mm. For the linear control case, we consider force command greater than design

limit to be a fail case as well. The reason for this distinction is that the overall design of

the linear controller is such that a fixed (design) force limit should not be exceeded. The

fact that reaching that particular force value does not always cause electrode saturation is

irrelevant, because the whole design process assumes certain limit to be always respected,

and where this assumption to fail, the correct behavior of the controller would not be

guaranteed. Discarding this particular limitation of the linear controller is the main

reason for the development of the nonlinear one, and in the end turns out to be a great

advantage.

The plot in figure 5.6 show that the linear controller reaches force saturation for a release

velocity of 15 µm/s, with the maximum overshoot being lower than 400 µm, as shown

in figure 5.5.

The plot in figure 5.7 shows the nonlinear controller reaching the 1mm maximum over-

shoot for a release velocity of 39 µm/s. The great advantage of this controller is that its

particular strategy and implementation allows for a full exploitation of the maximum

electrode voltage. A drawback of the nonlinear control strategy is that the computation

of the force corresponding to the applied voltages suffers from large displacement errors.
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A consistent error in the command feedback to the Kalman filter causes a deviation in

the state estimates, that for the DC force case is particularly slow to converge back to

the real value. Figure 5.8 shows the forces generated by the maximum force actuation

algorithm in the VGS control strategy, and the ones computed and fed as input to the

Kalman filter. The discrepancy caused by the first order model can be easily seen. A

correction meant to reduce this effect has been developed, and can be recognized as

an horizontal segment of the Fcomp line. Details on the implemented correction can be

found in the Appendix D.3.
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5.2 Evaluation of Ideal Performance

With the goal of establishing a performance index for the capture performance of the

various controllers, following the approach given in [14], an energy-based evaluation of

the maximum tolerable release velocity such that the mass can be stopped within a given

maximum overshoot is performed.

The general expression for the maximum force that can be generated is:

Fmax =
Nx

2

(
∂CEL,TM

∂x
+
∂CEL,H
∂x

)
V 2
max (5.1)

Where Nx is the number of actively pulling electrodes, and Vmax is the maximum ap-

plicable voltage of 130.1 V for the specific case. The expressions for the capacitance

derivatives are taken from a 6th-order IS capacitance model approximation. The case

of a positive release velocity is considered, to be stopped using a negative x force. No

external forces are applied and the test mass is released in its nominal position. The

equation that expresses conservation of energy between two time instants writes:

1

2
Mv2i +

∫ xf

xi

Fmax · dx =
1

2
Mv2f (5.2)

Where M is the test mass mass, vi is the initial (release) velocity and vf is the final

velocity. By taking the final instant to be the complete breaking time, vf = 0 and

the r.h.s. vanishes. Substituting dx = vdt into Fmax · dx the latter writes Fmax · vdt.
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Since the force is applied to reduce the velocity, the direction of the two vectors must

necessarily be opposite, therefore yielding a minus sign in the scalar product:

Fmax · vdt = − |Fmax| |vdt| = − |Fmax| |dx|

The highest tolerable initial velocity can then be calculated using the following formula:

vi =

√√√√2
∫ xf
0

Nx
2

(
∂CEL,TM

∂x +
∂CEL,H

∂x

)
V 2
maxdx

M
(5.3)

Equation 5.3 is evaluated for the case of interest (z), by substituting the numerical values

of the capacitance model, and the following values for the remaining parameters:

• Vmax = 130.1V

• xmax = 1 · 10−3m

• M = 1.96kg

• Nx = 2

The resulting value for the maximum tolerable velocity for a 1 mm maximum overshoot

is approximately 40.4 µm/s. Increasing the value of the maximum allowable overshoot

to the limit of the 6th order model accuracy (from 1 mm to 1.7 mm) only increases the

ideal maximum tolerable velocity by 20% (from ∼ 40 µm/s to ∼ 48 µm/s). A plot of the

maximum velocity dependence on the displacement limit is shown in figure 5.9. Since

the dependence is similar to a square root, it is clear that, beyond a certain value of

the displacement limit, the increase of allowable release velocity is of small importance

when compared to side effects like model uncertainties.

5.2.1 Controller Performance Indices

The derived “ideal” limit release velocity for 1 mm displacement is used as the 100%

performance level, and the ratios between simulation results and the computed value

are calculated to assess the performance levels of the controllers.

• Linear controller, 15 µm/s saturation limit: 37% of ideal limit;

• Nonlinear controller, 39 µm/s maximum overshoot limit: 96.5% of ideal limit.

The remaining 3.5% discrepancy between the ideal limit and the nonlinear controller

performance is due to imperfections of the simulation run, mainly the non-instantaneous
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Figure 5.9: Maximum tolerable release velocity versus maximum displacement limit

command application (there is some fraction of a second delay before the command is

applied, caused by issues in simulator implementation) and imperfection in the maximum

force voltage calculation (i.e. sometimes a voltage slightly smaller than 130.1 V is

applied).

For comparison purposes, a similar test has been carried out with the most recent

version of the LISA Pathfinder Sliding Mode Controller. This test resulted in the TM

reaching the maximum overshoot limit (1mm) for a release velocity of about 15.5 µm/s,

corresponding to 38% of the ideal limit. The existing Sliding Mode design shows then

performances equivalent to the selected best linear controller. However, it should be

noted that the two controllers reach their limits because of different reasons:

• The linear controller meets its limit due to saturation, while still providing a

relatively small overshoot;

• The Sliding Mode controller meets its limit due to reaching the prescribed over-

shoot limit, while still commanding a force smaller than its design saturation

limits.
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The low value of the linear controller maximum tolerable release velocity is caused by

the fact that its tuning was carried out by assuming as worst case initial conditions the

ones defined in section 2.3.5.1. An increase in release initial conditions value quickly

causes the controller to saturate.

The final result of the controller performance evaluation is that when compared on a

pure “initial velocity stop” ground, the new VGS controller is able to exploit the existing

hardware up to 96.5% of its physical limit: 2.5 times the value achieved by the existing

Sliding Mode controller.



Chapter 6

Overall Control Strategy

In this chapter, the control strategy for all the degrees of freedom is described. Results

of the verification phase using the LISA Pathfinder End-to-End simulator are presented,

together with comparison versus the existing design.

6.1 Description of Strategy and Justification

6.1.1 Strategy

The adopted control strategy is not the same for all the test mass degrees of freedom. In

fact, the Nonlinear controller is adopted only for the z/η couple, all the other degrees of

freedom being controlled simply with the LQG controller. The summary of all degrees

of freedom controllers’ characteristics is given:

• For the x and y degree of freedom, the LQG controller is adopted. The tuning is

carried out adopting a k parameter of 0.5.

• For the θ and φ degree of freedom, the LQG controller is adopted. The tuning is

carried out adopting a k parameter of 0.6.

• For the z degree of freedom, the Nonlinear switching controller is adopted. When

operating in the linear regime, the LQG controller is adopted. The tuning has

been carried out to allow the maximum possible breaking distance while avoiding

saturation. To do so, the xmax parameter has been set to the 1.7 mm limit, and the

k parameter value has been chosen as 1. Doing so results in a significantly slower

linear regime with respect to the previously presented results. However, in this

57
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design phase the exploitation of the velocity breaking controller to its maximum

limits was deemed more important.

• For the η degree of freedom, the LQG controller is adopted. Two sets of gains

are implemented, and the used one is chosen on the basis of the output from the

z controller. The regular set of gains is derived by tuning the controller using a

k parameter of 0.6. The reduced set of gains is derived by tuning the controller

using a k parameter of 1, but reducing the umax value to 7.23 · 10−6 rad/sec2 ,

corresponding to the chosen torque maximum limit for force maximization.

6.1.2 Justification of Strategy

The reason for using different control strategy is that the realistic operative conditions

are expected to be different for the three axes [15]. Moreover, the size of the electrodes

is different for the various DoF, leading to different maximum forces (the smallest one

being on the z DoF). A more realistic assessment of the TM velocities after release with

respect to the requirements specified in [8], is carried out in [15], and its main results

are:

• The estimated worst case z release velocity is 3.37µm/s;

• The estimated x and y release velocities caused by a 2 mrad plunger angle at

release are 7 nm/s;

• The estimated worst case angular velocities caused by a 2 mrad plunger angle and

200 µm misalignment are 3.6 µrad/s.

The most important result concerning the definition of the control strategy is that the

release velocity along z is estimated to be about 500 times larger than the ones on x

and y. When taking into account the increased complexity introduced by the nonlinear

strategy, the adoption of the velocity breaking controller for those degrees of freedom is

not reasonable. Similar considerations hold for the rotational degrees of freedom, where

the release velocity estimates are very low, and the actuation authority available in the

linear regime is more than sufficient to effectively control them.

6.2 Verification

The newly defined complete controller was implemented in the LISA Pathfinder End-

to-End simulator, and its performance was tested and compared to the existing sliding
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mode and zero order actuation algorithm design, for various test cases. The results of

the testing phase are summarized below.

6.2.1 Nominal Run

The first test case was the nominal run. The nominal conditions are defined as:

• All initial conditions as given in section 2.3.5.2;

• DC disturbances generated by spacecraft dynamics, solar pressure (undercompen-

sated by the spacecraft in an open-loop way, with a 20% knowledge error) and an

additional term (19.6 nN) acting directly on the test masses.

The time plots for the TM1 quantities of interest are presented. For each quantity, first

the existing SLM design is shown, followed by the new controller case.

All displacement and velocity plots show an imperfection for times immediately following

test mass release. This effect is caused by the settling of an anti-aliasing filter from which

the output data is collected.

6.2.1.1 Displacements and Attitudes
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Figure 6.1: Sliding Mode Controller nominal run Displacements
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Figure 6.2: Sliding Mode Controller nominal run Angles
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Figure 6.3: Switching Controller nominal run Displacements
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Figure 6.4: Switching Controller nominal run Angles

6.2.1.2 Velocities and Rates
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Figure 6.5: Sliding Mode Controller nominal run Velocities
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Figure 6.6: Sliding Mode Controller nominal run Rates
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Figure 6.7: Switching Controller nominal run Velocities
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Figure 6.8: Switching Controller nominal run Rates

6.2.1.3 Forces and Torques
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Figure 6.9: Sliding Mode Controller nominal run Forces
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Figure 6.10: Sliding Mode Controller nominal run Torques
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Figure 6.11: Switching Controller nominal run Forces
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Figure 6.12: Switching Controller nominal run Torques

6.2.2 Breaking Velocity Limit - Worst Case

The second test case focused on finding the highest value of the initial z velocity for

which the controllers’ behavior remained inside defined limits:

• The maximum overshoot along z shall be smaller than 1.7 mm (it is shown in

Appendix A.2 that beyond this value of z displacement, the 6th order model gives

unphysical results; for this reason there is no interest in results that show an

overshoot above such value);

• The controller shall not cause actuator saturation; this applies equally to the

Sliding Mode controller, the LQG controller and the linear regime of the Nonlinear

Switching controller;

• The controller shall not become unstable.

For comparison purposes, also the LQG controller has been included in the limit testing,

since it offers a much simpler design possibility. The test has been carried out adopting

worst-case conditions. Initial conditions have been taken as defined in section 2.3.5.2

and the solar pressure compensation by the spacecraft has been deactivated, representing

the case of maximum disturbance in the same direction of the initial displacement and

velocity; i.e. the worst case for test mass 1.
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Figures 6.13, 6.14 and 6.15 show the z displacements, velocities and forces for the limit

runs of the three controllers. The results are summarized below:

• The Sliding Mode controller reaches the maximum overshoot limit of 1.7mm for

a release velocity of 11.9 µm/s, without incurring in saturation. Since the main

design goal of the Sliding Mode controller is to avoid saturation, it can be stated

that it reaches its full limit.

• The Linear LQG controller incurs in saturation for a release velocity of 7 µm/s,

reaching an overshoot of less than 0.5mm. This is due to the fact that its tuning

was carried out for a worst case corresponding to the nominal release scenario,

therefore it quickly saturates in a more demanding situation;

• The Nonlinear switching controller meets the prescribed maximum overshoot limit

for a release velocity of 28.5 µm/s.
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Figure 6.14: Worst Case release velocity limit, velocities

As can be seen in figure 6.15, the nonlinear switching controller shows issues in the

generation of the maximum possible force. This is caused by the use of a first order ca-

pacitance model in the maximum force actuation algorithm, which for big displacements

can lead to incorrect solution picking, causing the generation of a sub-optimal output

force, and a significant torque error.

In figure 6.15 a second activation of the velocity breaking controller can be seen (shortly

before the 400 s mark). This can be explained by looking at figures 6.13 and 6.14. In that

particular time instant, the displacement changes sign (from positive to negative) while

the velocity is still negative, with a value greater than the design threshold. The velocity

breaking controller then uses the maximum force to prevent the test mass displacement

from increasing, avoiding the negative overshoot that a simple linear controller would

cause.
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Figure 6.15: Worst Case release velocity limit, forces
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6.2.3 Breaking Velocity Limit - Realistic Case

The third test case focused on finding the highest value of the initial z velocity for which

the controllers behavior remained inside the limits already defined for the previous case,

for the realistic release conditions derived in [15].

According to [15], all initial velocities (except for the z axis) have been set to the values

defined in section 6.1.2 of the present chapter. Since no LISA Pathfinder flight model

realistic test mass measurements are available yet, all initial displacements have been

set according to the requirement values. Open-loop compensation of the solar radiation

pressure has been employed, with a 20% underestimation error.

Figures 6.16, 6.17 and 6.18 show the z displacements, velocities and forces for the limit

runs of the three controllers. The results are qualitatively equivalent to the worst case

testing, with the final values of limit velocities being pushed up a bit by the more

favorable conditions.

• The Sliding Mode controller reaches the maximum overshoot limit of 1.7 mm for

a release velocity of 12.5 µm/s, without incurring in saturation;

• The Linear LQG controller incurs in saturation for a release velocity of 10 µm/s,

reaching an overshoot of less than 0.5 mm. The same considerations of the worst

case on the controller limit are valid in this case;

• The Nonlinear switching controller meets the prescribed maximum overshoot limit

for a release velocity of 33 µm/s.

The very long convergence time of the Nonlinear switching controller, when operating

in its linear regime, is caused by the very slow tuning that was carried out to avoid high

displacements saturation.
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Figure 6.16: Realistic Case release velocity limit, displacements
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Figure 6.18: Realistic Case release velocity limit, forces

6.2.4 Test Mass Charge Limit

The third test case focused on finding the highest value of the TM charge for which the

controllers behavior remained inside the limits already defined for the previous cases.

As can be verified by looking at equations 2.4 and 2.8, the presence of a charge on the

TM causes one of the assumptions behind the actuation algorithm to be not satisfied;

therefore introducing an error in the actuated force. Such force error causes the controller

to act incorrectly, eventually leading to either overshoot limits, saturation, or instability.

Please note that, while the plots are shown only for the z degree of freedom, (due to its

different behavior in the Nonlinear controller) this test does not privilege one axis with

respect to the others; a prescribed limit could be met on any of the degrees of freedom.



Chapter 6. Overall Control Strategy 72

The test has been carried out adopting nominal conditions, and increasing the value of

the test mass charge. Figures 6.19, 6.20 and 6.21 show the z displacements, velocities and

forces for the last successful runs of the three controllers. The results are summarized

here:

• The Sliding Mode controller becomes unstable for a test mass initial voltage higher

than 11 V;

• The Linear LQG controller starts saturating for a test mass initial voltage of

approximately 30 V;

• The Nonlinear switching controller starts saturating (on its x and y axes) for a

test mass voltage of approximately 30V. This is obvious since the controllers for

the degrees of freedom different from z and η are just the LQG ones. Additionally,

for a voltage of 30V, we start observing the z velocity breaking controller being

switched on and off multiple times, due to the actuation error causing an undesired

increase in the z velocity. For this reason, the 30V voltage level can be assumed

as well the limit for the velocity breaking controller.

Figure 6.22 shows a particular of figure 6.21 to highlight the force generation errors. The

influence of the test mass charge is particularly easy to recognize, as an actuated force

can be seen as soon as the test mass is released (100 seconds mark) before a command

signal is produced by the controllers.

The great difference in tolerable test mass voltage is probably due to the greater error

introduced by the zero order actuation algorithm [2]. Further investigation should be

done on the effects of a test mass voltage in the force generation using the two different

algorithms [2] and [7].
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Figure 6.19: Test Mass charge limit, displacements
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100 150 200 250 300 350 400
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−6

Time [s]

z 
F

or
ce

 [N
]

Figure 6.22: Test mass charge limit, forces, particular



Chapter 6. Overall Control Strategy 75

6.3 Operational Limits of Investigated Control Strategies

The limits of the various controllers operating conditions, explored in the previous sec-

tion, are summarized below.

The Sliding Mode controller is limited mainly by the chosen maximum overshoot value

(1.7 mm for the tests of section 6.2). Its maximum tolerable release velocity for worst

case conditions has been assessed to be 11.9 µm/s. Its maximum tolerable release

velocity for realistic case conditions has been assessed to be 12.5 µm/s. The controller

has been found to become unstable if a charge is present on the test mass, corresponding

to a voltage higher than 11 V.

The LQG controller is limited mainly by saturation, due to its design point tuning. Its

maximum tolerable release velocity for worst case conditions has been assessed to be

7 µm/s. Its maximum tolerable release velocity for realistic case conditions has been

assessed to be 10 µm/s. The controller has been found to saturate if a charge is present

on the test mass, corresponding to a voltage higher than 30 V.

The Nonlinear switching controller is limited mainly by the by the chosen maximum

overshoot value (1.7 mm for the tests of section 6.2). Its maximum tolerable release

velocity for worst case conditions has been assessed to be 28.5 µm/s. Its maximum

tolerable release velocity for realistic case conditions has been assessed to be 33 µm/s.

The controller has been found to saturate and display undesired switching behavior if a

charge is present on the test mass, resulting in a voltage higher than 30 V.



Chapter 7

Conclusions

The presented work focused on the development of a control strategy to achieve the best

possible test mass catching performances, within the constraints given by the Inertial

Sensor Front End Electronics (maximum electrode voltages of 130.1 V) and the geometric

characteristics of the Inertial Sensor.

In order to find such a controller, an investigation of the limits of linear control has been

performed which led to a solid design of an LQG controller.

A more complex nonlinear controller was then developed to maximize the test mass

release velocity breaking performance. The foundation of the new concept was a bang-

bang velocity controller whose force amplitude was not defined a-priori, but computed

online based on position measurements. In order to realize the newly proposed concept,

the existing actuation algorithm [7] was modified to include the possibility to generate

the maximum possible force of a given sign, for the measured test mass displacements

and required torque command.

The resulting control strategy was shown to be able to exploit the system electrostatic

actuation up to 96.5% of its physical limit: 2.5 times the value achieved by the current

design.

A complete control strategy was designed for the whole system, by combining the lin-

ear LQG controller and the nonlinear test mass release velocity breaking controller, as

a mean to bring the mass back to the zero position. Test runs performed with the

LISA Pathfinder End-to-End simulator essentially confirmed the expected performance

improvements.

Given the following release scenario, as defined in the LISA Pathfinder test mass release

requirements [8]:

• 200 µm initial linear displacements, 5 µm/s initial linear velocities,(same signs);
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• 2 mrad initial rotational displacements, 100 µrad/s initial rotational velocities,

(same signs);

• Disturbance forces and torques acting with same sign as displacements and veloc-

ities;

• Solar radiation pressure acting on the spacecraft (translating into a disturbance

on the test mass along the z axis) being compensated by thrusters assuming a 20%

underestimation error;

The new controller maximum overshoot along the most critical axis (z) was reduced to

less than half the value obtained using the existing control strategy (from approximately

650 µm to 300 µm).

For the realistic release scenario (where the x and y velocities are reduced to 10 nm/s

and the rotational rates to 5 µrad/s) the new control strategy can cope with a release

velocity along z of 33 µm/s (compared to 12.5 µm/s of the sliding mode).

For a worst case scenario, defined as the nominal scenario with no solar pressure com-

pensation, an improvement of the maximum release velocity from 11.9 µm/s to 28.5

µm/s has been achieved.

Such improvements allow for a relaxation of the maximum release velocity requirements

on z by a factor of more than 5, opening the possibility to reduce hardware verification

costs and difficulties.

From a more general perspective, the interesting case of finding the controller which most

effectively exploits the available system hardware has been studied. From a stability

point of view, the application of a bang-bang controller to first order systems represents

the solution with highest possible robustness (the system cannot perform better than

its maximum).



Chapter 8

Outlook

Further investigation could comprise the following three aspects:

• The maximum force actuation algorithm

• The estimator input errors

• The control law that takes over the control after test mass velocity breaking is

complete

The most critical aspect that emerged during the development of the present control

strategy has been the modification of the actuation algorithm [7] to obtain the maximum

force actuation algorithm. While inverting the linear force model to obtain the required

voltages provides sufficiently accurate solutions, using the calculated voltages in the

linear model to calculate the corresponding forces suffers from large errors. This feature

of the linear model has two negative consequences: the introduction of a significant error

in the Kalman filter input, and the possibility of undesired behavior of the algorithm

itself. Unfortunately, the use of a higher order model to carry out force computation

has been found to be cumbersome and lacking the possibility to use one single set of

expressions for all the possible combinations of command signs, typical of the first order

one. Further work might focus on the research of a method to efficiently exploit a higher

order force model to avoid these issues.

The second important source of imperfection in the proposed control strategy is the

presence of errors in the Kalman filter inputs, which are not of pure noisy nature.

Kalman filter theory assumes the inputs to be corrupted by zero-mean noise, whereas

in the studied case the filter inputs are corrupted by actual errors (i.e. commanded to

actuated force and measured to real position), whose influence on the overall uncertainty

is greater than the noise influence. The problem has been addressed simply by treating
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the systematic errors as noise with suitable power within the Kalman filter framework.

However, work on the origin of such errors, and possibly the inclusion of a model for

them into the filter algorithm might improve estimation performances. In regard to this,

addressing the force errors when re-computing the maximum forces from the obtained

voltages would already greatly improve filter performances.

Finally, the control law that takes the test mass from its position at complete breaking,

back to the nominal position, might be further studied. Currently, a linear controller is

used, which is tuned to avoid saturation for the highest occurring final breaking distance.

However, this results in a generally slow controller, more so for conditions that do not

cause the mass to reach the overshoot limit. A study on an alternative concept, dealing

with low initial velocities but possibly very high displacements, could further improve

the overall controller performances.



Appendix A

System Model Features

A.1 Test Mass Dynamics

The position vectors for both spacecraft and test mass relative to their purely gravi-

tational motion, in an inertial frame are defined as: rTM NG and rSC NG. They are

obtained by taking the generic position vector defined in an inertial frame, and sub-

tracting from it the position vector corresponding to pure gravitational motion. The

example for the spacecraft case is then:

rSC − rSC G = rSC NG (A.1)

Where the suffix G stands for “gravitational” and the suffix NG stands for “non-

gravitational”. As all the following derivation refers to the non-gravitational motion,

the NG suffix will be omitted from now on. In figure A.1, a representation of rTM and

rSC , and all other defined position vectors is presented. It is assumed that the unper-

turbed gravitational motion is the same for both the test masses and for the spacecraft.

While this is not strictly correct, the actual difference between the two is essentially

non-existent, and therefore neglected.

The equations of motion for spacecraft and test mass with respect to their unperturbed

gravitational motion, using the above described position vectors are:

mr̈TM = f
TM

(A.2)

Mr̈SC = f
SC

(A.3)

Where f
TM

and f
SC

represent all non-gravitational forces which are acting on TM and

spacecraft, respectively.
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Figure A.1: Definition of relevant position vectors and reference frames. In black,
position vectors in inertial reference frames; in red, position vectors in rotating reference

frames

The r01 vector is defined as the position vector of the test mass housing centre (corre-

sponding to test mass nominal position) in a spacecraft fixed reference frame centred in

spacecraft centre of gravity.

The r vector is defined as the position vector of the test mass centre of gravity with

respect to the housing centre (nominal position) in a spacecraft fixed reference frame

centred in the housing centre.

Please note that all the spacecraft fixed reference frames rotate with angular velocity

ωSC . With these definitions, the following relation holds between the various vectors:

r = rTM − rSC − r01 (A.4)

In order to obtain the equations describing the relative motion between test mass and

spacecraft, equation A.4 is differentiated twice with respect to time to obtain:

r̈ + 2ωSC × ṙ+ω̇SC × r + ωSC × (ωSC × r) = ...

... = r̈TM − r̈SC − ω̇SC × r01 − ωSC × (ωSC × r01)
(A.5)
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The angular momentum equations for spacecraft and TM writes:

tSC = ISC ω̇SC + ωSC × ISCωSC (A.6)

tTM = ITM ω̇TM + ωTM × ITMωTM (A.7)

Equations A.3, A.5, A.6 and A.7 form the system describing the motion of the spacecraft

due to non-gravitational disturbances and of the TM with respect to its housing.

Mr̈SC = f
SC

r̈ + 2ωSC × ṙ+ω̇SC × r + ωSC × (ωSC × r) = ...

... = r̈TM − r̈SC − ω̇SC × r01 − ωSC × (ωSC × r01)
tSC = ISC ω̇SC + ωSC × ISCωSC
tTM = ITM ω̇TM + ωTM × ITMωTM

(A.8)

The set of equations described by A.8 can be simplified by carrying out orders of mag-

nitude analysis of the various terms of each one. By using the requirements specified in

[8] for velocities and accelerations, the maximum modulus of each term can be approxi-

mately determined. The set of simplified equations appears as follows:

r̈SC =
f
SC
M

r̈ =
f
TM
m −

f
SC
M − ω̇SC × r01

ω̇SC = I−1SCtSC

ω̇ = I−1TM tTM − I
−1
SCtSC

(A.9)

Where ω stands for the relative angular velocity between TM and spacecraft, and is

defined as ω = ωTM − ωSC .

By using the notation:

r̃01 =


0 r3 −r2
−r3 0 r1

r2 −r1 0


The vector product can be written in matrix form:

ω̇SC × r01 = r̃01 · ω̇SC

By using accelerations as variables, the system equations can be written in matrix form:

aSC =
f
SC
M ; aTM =

f
TM
m ; αSC = I−1SCtSC ; αTM = I−1TM tTM
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r̈SC

ω̇SC

r̈

ω̇


=


I 0 0 0

0 I 0 0

−I −r̃01 I 0

0 −I 0 I




aSC

αSC

aTM

αTM


The accelerations can be split between command and disturbance contribution for the

spacecraft; command, disturbance and stiffness for the TM:

•

{
aSC

αSC

}
= uT +dSC where uT stands for thruster command and dSC for external

disturbances on the spacecraft;

•

{
aTM

αTM

}
= uES+dTM−Ω2

{
r

ϕ

}
where uES stands for electrostatic suspension

command, dTM for external disturbances on the test mass, and the last term

accounts for forces dependent on test mass position.

Adopting this structure, the system is described by the following matrix representation:
r̈SC

ω̇SC

r̈

ω̇


=

[
0 0

0 −Ω2

]
rSC

ϕ
SC

r

ϕ


+


I 0 0 0

0 I 0 0

−I −r̃01 I 0

0 −I 0 I


[(

uT

uES

)
+

(
dSC

dTM

)]

(A.10)

The first six equations are then entirely uncoupled.

The last six equations are coupled to the first six through thruster commands and space-

craft disturbances, and among themselves by effect of the stiffness matrix off-diagonal

elements. These elements however, are modeled to be about 2 orders of magnitude

smaller than diagonal ones, therefore allowing the matrix to be approximated as diago-

nal.

The equation for the test mass x degree of freedom writes:

ẍ1 = −Ω2
11x1 − uT xSC

− dSC xSC
+ z1(uT θSC

+ dSC θSC
)

− y1(uT ϕSC
+ dSCϕSC

) + uESx1 + dTM x1

(A.11)

By assuming the spacecraft disturbances to be compensated using thruster action, to a

level where they are negligible with respect to TM external disturbances, the equation

becomes:

ẍ = −Ω2
11x+ uESx + dTM x (A.12)
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This last shape of the equation of motion simply expresses the dynamics of a forced

spring.

A.2 Adopted Model Limits

While carrying out the verification test runs for the various controllers, an ultimate limit

on the displacements had to be defined, in order to find out how far the tests could be

pushed while still providing meaningful results. A first definition of such a limit was the

constraint that the test mass shall not touch the housing or the retracted plungers. Such

a case allowed for wide displacements ranges (up to ±2.4 mm of pure z displacement).

However, anomalies in the model behavior suggested further investigation. It was found

out that, for displacements smaller than the ones allowed by the contact limitation, the

6th order model started providing unphysical results. For this reason, an evaluation of

its validity limits has been carried out.

The displacement limit for validity has been defined as that value of the coordinate for

which, the magnitude of a restoring force generated by fixed electrode voltages (e.g.

positive displacement, negative force) stops decreasing and starts increasing. Such a

behavior is nonphysical, and signals an anomaly in the model.

While this limit is of interest to us only for the z axis, the evaluation has been carried

out for x and y as well. Plots of the force versus the displacements are shown in figure

A.2 and table A.1 summarizes the resulting limits.

Gap size Model validity limits
x 4 mm 2mm
y 2.9 mm 1.4 mm
z 3.5 mm 1.7mm

Table A.1: 6th order model displacement limits
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Figure A.2: 6th order forces showing model validity limits



Appendix B

PID Controller Gains Derivation

In this appendix, a set of gains is derived for a PID controller, with the goal of exploiting

a certain given fraction of the total available (known) command, for a certain condition,

which is assumed to be the most demanding one.

For the specific case, the gains have been derived such that when in the worst-case initial

conditions, the controller uses a set fraction of the total available actuation authority,

thus avoiding saturation of the actuators. The equations of motion for one DOF (the x

coordinate in the example) write:

ẍ = −Ω2
11x+ u+ d (B.1)

u = KP e+KDė+KI

∫ t

0
edτ (B.2)

e = r − x (B.3)

xt=0 = x0 ; ẋt=0 = ẋ0 (B.4)

The Laplace transform of the controlled system free response (zero reference signal and

nonzero initial conditions) is:

X(s) =
s2x0 + s (ẋ0 +KDx0) + d

s3 +KDs2 + s
(
KP + Ω2

11

)
+KI

(B.5)

Or, looking at the forced system (zero initial conditions, nonzero reference signal) the

controlled system transfer function:

X (s)

R (s)
=

s2KD + sKP +KI

s3 +KDs2 + s
(
KP + Ω2

11

)
+KI

(B.6)
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The system has three poles, and the denominator can be written as the product of a

real pole and a complex conjugate pair:

(
s+ 1/τ

) (
s2 + 2ξωns+ ω2

n

)
= s3 + s2

(
1/τ + 2ξωn

)
+ s

(
2ξωn
τ

+ ω2
n

)
+
ω2
n

τ
(B.7)

Where τ is the first order characteristic time, ωn is the second order dynamics natural

frequency and ξ is its damping ratio.

By expanding and comparing this to the former writing of the denominator, the gains

can be written as:

KD = 1/τ + 2ξωn (B.8)

KP + Ω2
11 =

2ξωn
τ

+ ω2
n (B.9)

KI =
ω2
n

τ
(B.10)

Two distinct characteristic dynamics have been identified: a first order and a second

order one. Their characteristic times are related by a suitably defined parameter:

n =
τ

4/ξωn

↔ τ =
4n

ξωn
(B.11)

The parameter n represents the ratio between the first order characteristic time τ (expo-

nential decay time) and the second order settling time which in the scope of this thesis

is defined as 4/ξωn
1. Setting the value of n determines the speed at which the first

order dynamic of the system is completed, with respect to the second order one. For

a first approximation, requiring the two dynamics to have the same characteristic time

was considered reasonable. The n was found to have limited influence over the overall

system settling time, therefore requiring some trial and error to find a satisfactory value.

Adopted values are in the range of 0.2 to 2.

The condition that the system must use a set fraction of the maximum available actua-

tion when facing the worst case initial conditions writes:

u (0) = KPx0 +KDẋ0 = uc (B.12)

Where uc is the chosen portion of total available actuation authority.

By substituting the expressions for the gains, and replacing τ with the expression in

1The formula for the settling time is not unique: Tay, Mareels and Moore (1997) defined settling
time as ”the time required for the response curve to reach and stay within a range of certain percentage
(usually 5% or 2%) of the final value.” [16]. Depending on the chosen threshold, a different constant for
the numerator arises. For example, in [10] a 1% threshold is chosen, resulting in 4.6

ωn
, while for 2% one

would obtain 3.9. Since the exact value of the coefficient is arbitrary, for the derivation the simple value
of 4 has been adopted.
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B.11, the following equation is obtained:

ω2
n

(
1 +

ξ2

2n

)
x0 + ξωn

(
2 +

1

4n

)
ẋ0 − Ω2

11x0 − uc = 0 (B.13)

By requiring the second order dynamic to have a set damping ratio (1 was chosen for

minimum overshoot) equation B.13 is a second order polynomial in the natural frequency,

therefore it can be solved the resulting ωn value can be substituted back in the gains

expressions to obtain the controller.

ωn =

−ξẋ0
2

(
2 +

1

4n

)
±

√
ξ2ẋ20

4

(
2 +

1

4n

)2

+
(
x0Ω2

11 + uc
)(

1 +
ξ2

2n

)
x0(

1 +
ξ2

2n

)
x0

(B.14)

The correct solution to obtain a positive value of the natural frequency is the one with

the plus sign. The values of n chosen in the final PID controller shown in chapter 3,

including the filter, are:

• n = 0.3 for the z DoF controller

• n = 0.2 for the η DoF controller
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State Estimators Design

The derivation for the two state estimators that were considered during the development

of the new control strategy is reported here, together with the main results of their

comparison.

C.1 Reduced State Observer

Following standard textbook approach [10], a brief derivation of a reduced state observer

for the studied system is presented.

The state vector is divided in a state x1 which is measured, and states x2 and x3 which

are not measured. The r vector is defined as:

r = [x2, x3]
T (C.1)

and the system equations can be written as:

ẋ =

[
ẋ1

ṙ

]
=

[
A11 A12

A21 A22

][
x1

r

]
+

[
B1

B2

]
u (C.2)

With

A11 = [0] ; A12 =
[

1 0
]

; A21 =

[
−ω2

0

]
; A22 =

[
0 1

0 0

]
(C.3)

B1 = [0] ; B2 =

[
1

0

]
(C.4)

The goal of the reduced state observer is to provide an estimate of the non-measured

states, which is called r̃. The dynamics of the reduced state observer is then described

89
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by the following equations:

ρ̇ = (A22 − L ·A12) ρ+ (B2 − L ·B1) · u+ ((A22 − L ·A12) · L+A21 − L ·A11) y (C.5)

r̃ = ρ+ L · y (C.6)

Where ρ stands for the observer state vector. It is important to remark that the observer

state vector ρ does not correspond to the reduced system state vector r̃.

The observer estimate error vector is defined as:

ε̇ = (A22 − L ·A12) · ε (C.7)

The dynamic matrix of the reduced observer, as well as of its error, corresponds to

(A22 − L ·A12). The eigenvalues of such matrix determine the system poles, and there-

fore its dynamics. By requiring given observer dynamics characteristics, we can deter-

mine the observer gains.

The poles of the system are the roots of the characteristic equation:

det (sI − (A22 − L ·A12)) = 0 (C.8)

By assuming L =
[
l1 l2

]T
, equation C.8 can be written in scalar form:

s2 + l1s+ l2 = 0 (C.9)

And, by comparing that shape with the more familiar one:

s2 + 2ξωns+ ω2
n = 0 (C.10)

The elements of the gain vector can be determined by imposing certain features of the

system dynamics. In particular,focusing on the dynamics damping ratio and settling

time:

• ξ = 1 for well damped dynamics;

• Ts = 4
ξωn

to be chosen as system design parameter.

The gains are then calculated as:

l1 =
8

Ts
; l2 =

16

(Tsξ)
2 (C.11)
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Imposing a short observer settling time (making the system faster) results in a noisier

state estimate. On the other hand, making the system slower allows for more noise

rejection, at the cost of a longer estimation convergence time. For our purposes, a

settling time of 10 seconds has been chosen. This results in a rather fast observer (the

slowest state estimate to reach steady state takes about 30 seconds) that however does

not show great noise rejection properties, especially on the third state estimate. The

torque disturbance estimate is, as a matter of fact, almost entirely noise. Due to the

great difference in orders of magnitude between the torque disturbance and the actuated

torque, this will not result in a significant issue for the controller.

C.2 Kalman Filter Design

Fundamentals of Kalman filtering can be found in several optimal estimation textbooks.

Therefore, only a description of what a Kalman filter is, and how to derive one that

suits our application is presented. The following derivation is largely based on [1].

The discrete-time representation of the studied linear system writes:

xk = Fk−1xk−1 +Gk−1uk−1 + wk−1

yk = Hkxk + vk (C.12)

In the simple Kalman filter case, the noise processes {wk} and {vk} are white, zero-mean,

uncorrelated and of known covariance matrices Qk and Rk respectively.

E
[
wkw

T
j

]
= Qkδk−j

E
[
vkv

T
j

]
= Rkδk−j (C.13)

E
[
vkw

T
j

]
= 0

For the studied case, however, this is not entirely true. The electrostatic actuation and

sensing noise, in fact, are given as colored noise, with known (from requirements) power

spectral densities. The first filter will still be designed assuming white noise, verifying

a posteriori whether its performance is satisfactory, or it is necessary to adopt a more

complex filter (e.g. by using state augmentation).

The use of purely white noise can be justified by observing that the noise spectrum is

indeed flat over a wide range of frequencies, and rises considerably (colored behavior)

for frequencies in the millihertz range, its effect becoming substantial for timescales of

thousands of seconds, much greater than the approximate settling times for test mass

release and catch phase.
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Figure C.1: Timeline for a priori and a posteriori estimates and error covariances [1]

The Kalman filter algorithm is essentially a repeating update of system state estimation,

and error covariance matrix estimation, by exploiting known features of the system (its

discrete-time matrix representation, and noise processes covariance matrices) and noisy

measurements of the system output. Two types of estimation are defined, for both

system state, and error covariance matrix:

• The a posteriori estimation

• The a priori estimation

The a posteriori estimate is calculated when all measurements including time k are

available.

The a priori estimate is calculated when all measurements up to, but not including,

time k are available.

Figure C.1 shows the concept of a priori (minus superscript) and a posteriori (plus

superscript) estimates for timesteps k-1 and k. The filter is initialized at time 0 with

some estimate of the initial system state x̂+0 .

From this initialization step, the a-priori state estimate for timestep k = 1 is computed

using the following formula:

x̂−1 = F0x̂
+
0 +G0u0 (C.14)

The general relation between the a priori estimate for timestep k and a posteriori for

timestep k − 1, called time update equation, is:

x̂−k = Fkx̂
+
k−1 +Gk−1uk−1 (C.15)

Which essentially states that, having the a posteriori state estimate for timestep k − 1,

the state estimate can be updated based on our knowledge of the system dynamics. No

additional information coming from the measurements is introduced in this step.

The same must be done for the state estimation error covariance matrix, and its time

update equation is:

P−1 = F0P
+
0 F

T
0 +Q0 (C.16)
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The general form of which, is:

P−k = Fk−1P
+
k−1F

T
k−1 +Qk−1 (C.17)

Again, no information coming from measurements is introduced in this step.

The estimates at time k are then updated, based on the measurements at time k (mea-

surement update equation), transitioning from the a priori estimates to the a posteriori

ones. The equations used in doing so so are:

Kk = P−k H
T
k

(
HkP

−
k H

T
k +Rk

)−1
(C.18)

x̂+k = x̂−k +Kk

(
yk −Hkx̂

−
k

)
(C.19)

P+
k = (I −KkHk)P

−
k (C.20)

C.2.1 Final Filter Equations

Finally, all the above equations are combined in the algorithm which essentially is the

Kalman filter for the studied system. Since the studied linear system is a time invariant

one, all the system matrices have no time-index k. The algorithm then appears as

follows.

The dynamic system of interest is given by the equations:

xk = Fxk−1 +Guk−1 + wk−1 (C.21)

yk = Hxk + vk (C.22)

E
[
wkw

T
j

]
= Qkδk−j (C.23)

E
[
vkv

T
j

]
= Rkδk−j (C.24)

E
[
vkw

T
j

]
= 0 (C.25)

The Kalman filter is initialized as follows:

x̂+0 = E (x0) (C.26)

P+
0 = E

[(
x0 − x̂+0

) (
x0 − x̂+0

)T ]
(C.27)

The filter itself is made up of the following equations, which are computed in the reported

order for each timestep k:

1. P−k = FP+
k−1F

T +Q

2. x̂−k = Fx̂+k−1 +Guk−1
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3. Kk = P−k H
T
(
HP−k H

T +R
)−1

4. x̂+k = x̂−k +Kk

(
yk −Hx̂−k

)
5. P+

k = (I −KkH)P−k

The filter initialization values are taken as:

• x̂+0 =


0

0

0

 (since no knowledge of the initial state is available);

• P+
0 =


1 0 0

0 1 0

0 0 1


The state estimation error covariance matrix initial condition P+

0 is worth some expla-

nation. It is essentially a representation of how much our estimate of the initial state is

correct. If we thought our estimate to be close to reality, we could set it to a very small

value. On the other hand, if we have absolutely no knowledge of the initial state, and

hence our estimate is a complete guess, strictly speaking the elements of the P+
0 diagonal

should be infinite. However, it can be shown ([11], chap. 4 “Initial covariance matrix”)

that the initial condition on the error covariance matrix has almost no influence on the

filter performances (as long as its elements are different from zero). In our case, setting

the diagonal elements to proper values (for example, the maximum possible value of

E
[(
x0 − x̂+0

) (
x0 − x̂+0

)T ]
) or setting them to 1, produces no appreciable difference in

the filter performances.

C.2.2 Implementation Remarks

The actual implementation of the Kalman filter must be carried out carefully, since one

might lose all advantages connected to its use.

Due to the time-variant nature of the filter, when initialized, it will perform a swift

adaptation to the system state (very low noise rejection) in the first time steps, and

then quickly transition to a slower, higher noise-rejecting filter. This transition, and

the resulting “speed” of the steady state filter, is entirely determined by the system

and noise model that we use for designing it; it has no connection whatsoever with

the incoming inputs and produced outputs. The most immediate consequence to such

a behavior is that, if initialized and fed (for some reasons) with wrong inputs, it will

quickly settle to a wrong estimate of the system state, and then be very slow to converge
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to the actual one when correct inputs are available. Such a problem showed up in the

simulator implementation of the filter, due to the fact that the sensor model output was

produced with a delay smaller than a second, causing the first few inputs to the filter to

be detrimental for state estimate. It was dealt with by delaying by 1 second the filter

activation so that the correct readings were available at sensor output.

Another point in the filter implementation is the correct matching of measured position

and incoming command. For the filter to perform as expected, a correctly matching

pair of yk and uk−1 must be fed to the algorithm at every time step. In the simplified

simulator, a delay of 0.2 seconds in real to measured position was detected, and one of

0.1 seconds from commanded to actuated force.

C.2.3 Weight Matrices Derivation

To build the Kalman filter for the studied system the following building blocks are

needed:

• The system fundamental matrix: F

• The system input matrix: G

• The system output matrix: H

• The process and measurement noise covariance matrices: Q and R

The first three matrices are obtained through standard continuous system discretization

[10], adopting a first order approximation for the exponential matrix:

F = eAT ∼= I +AT (C.28)

Guk =

∫ tk+T

tk

eAtBu (t) dt =

∫ T

0
eAtBu (tk) dt ∼= T

(
I +

AT

2

)
Bu (tk) (C.29)

H = C (C.30)

In principle, the R and Q matrices should represent the measurement and process noise

covariance matrices. However, more generally, they should represent the expected value

of the square of the difference between the real and the assumed system. If one would

have a “strictly noisy” measurement, and a “strictly noisy” command, then Q and R

would correspond exactly to the measurement and process noise covariance matrices.

However, in the present application, noisy and approximated measurement and com-

mand are used. For this reason, Q and R take into consideration both the uncertainty

introduced by the noise, and by the measurement or actuation error.
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C.2.4 Derivation of the Q Matrix

Starting from the continuous representation of the system, the continuous-time process

noise covariance matrix is obtained:

w =


0

w

0

 (C.31)

Qcont = E
[
w · wT

]
=


0 0 0

0 σ2w 0

0 0 0

 (C.32)

The discrete-time process noise covariance matrix Q can then be determined from the

continuous one and the system fundamental matrix:

Qk =

∫ Ts

0
F (τ)QcontF

T (τ) dτ (C.33)

For the studied case, the resulting Q matrix is:

Q = σ2w

∫ Ts

0


τ2 τ + −ω2τ3

2 0

τ + −ω2τ3

2 1 + −ω2τ3

2 0

0 0 0

 dτ (C.34)

Some orders of magnitude simplifications are possible:

τ ∼= 10−2 (C.35)

ω2 ∼= 10−7 (C.36)

τ � ω2τ3 (C.37)

Finally obtaining:

Q = σ2w


T 3
s
3

T 2
s
2 0

T 2
s
2 Ts 0

0 0 0

 (C.38)

The σ2w value should represent the variance of the noise. However, for the system at

hand, which contains command errors as well as noise, it is more useful to imagine it as

representing the magnitude of the system uncertainties, and is computed as the expected

value of the squared error between real and assumed model. It can be then thought of

as composed of two different contributions:

• The noise uncertainty
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• The command error uncertainty

The latter is then treated as a zero mean uncorrelated quantity, i.e. additional noise.

The magnitude of these two contributions is assessed below.

C.2.4.1 Assessment of Noise Uncertainty

By assuming zero-mean process noise, the approximated variances for each degree of

freedom are computed, by integrating the respective power spectrums between 0 and a

threshold frequency where the computation is truncated.

σ2wnoise =

∫ fth

0
Hact(s)

2ds (C.39)

Where H(s) is defined in [17], DF-CON-014 as the noise shape filter characteristic trans-

fer function. This threshold has been chosen as 0.1Hz, driven from the examination of

the Bode plot of the noise shape filter used to model the noise (see figure C.2). Further

increase of the threshold resulted in negligible increase of the resulting variances.

The results are:
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Figure C.2: Magnitude Bode plot for the actuation noise shape filter
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σ2wnoise

x 1.641 · 10−20m
2

s4

y 6.247 · 10−20m
2

s4

z 2.605 · 10−19m
2

s4

θ 1.216 · 10−17 rad
2

s4

η 4.863 · 10−17 rad
2

s4

φ 1.66 · 10−18 rad
2

s4

Table C.1: Process noise variances

C.2.4.2 Assessment of Command Error Uncertainty

Since the implemented actuation algorithm is based on a first-order capacitance model,

we assume a 10% error in the commanded to actuated force and torque will be present.

ureal = (1± 0.1)ucmd (C.40)

For this reason, the absolute value of the actuation error will always (while the lineariza-

tion holds) be smaller than 10% of the maximum actuation authority:

uerr = ureal − ucmd = ±0.1ucmd ≤ ±0.1umax (C.41)

To evaluate the influence of such an error on our model, we conservatively assume

that the error between our model (commanded force/torque) and the real one (actu-

ated force/torque) will always be the maximum value: 10% of the maximum actuation

authority for the particular degree of freedom:

|uerr| = 0.1umax (C.42)

Since the error is in this case assumed to be a constant, the expected value of its square

will be just its squared value.

E
[
u2err

]
= 0.01u2max (C.43)

The results of this evaluation, for each degree of freedom, are:
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10% max actuation σ2wcmderr

x 9.6 · 10−8m
s2

9.22 · 10−15m
2

s4

y 1 · 10−7m
s2

1 · 10−14m
2

s4

z 5.6 · 10−8m
s2

3.14 · 10−15m
2

s4

θ 4.99 · 10−6 rad
s2

2.5 · 10−12 rad
2

s4

η 2.43 · 10−6 rad
s2

6 · 10−12 rad
2

s4

φ 3.03 · 10−6 rad
s2

9.2 · 10−12 rad
2

s4

Table C.2: Command error variances

C.2.4.3 Final Q Matrices

As can be easily verified just by looking at the above tables, the uncertainty of our

model due to the command error dominates the one due to the noise by 5 to 6 orders

of magnitude. For this reason, for filter tuning, a Q matrix where σ2w = σ2wcmderr was

adopted.

σ2w

x 9.22 · 10−15m
2

s4

y 1 · 10−14m
2

s4

z 3.14 · 10−15m
2

s4

θ 2.5 · 10−12 rad
2

s4

η 6 · 10−12 rad
2

s4

φ 9.2 · 10−12 rad
2

s4

Table C.3: Final Q matrix variances values

C.2.5 Derivation of the R matrix

Since the measurement for our system is a scalar quantity, the R matrix will be a simple

scalar as well. In general, R = σ2v , where σ2v represents the expected value of the

difference between the real and the assumed model. However, just like the Q matrix

case, the system model is characterized by a noisy, approximated, measurement. For this

reason, it is needed to again evaluate the contributions of two sources of uncertainties:

noise and measurement error.
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Figure C.3: Magnitude Bode plot for the sensing noise shape filter

C.2.5.1 Assessment of Noise Uncertainty

By assuming zero-mean process noise, the approximated variances for each degree of

freedom are computed, by integrating the respective power spectrums between 0 and a

threshold frequency where the computation is truncated.

σ2wnoise =

∫ fth

0
Hsens(s)

2ds (C.44)

Where H(s) is defined in [17] DF-CON-019 as the noise shape filter characteristic transfer

function.

This threshold has been chosen as 0.1Hz, driven from the examination of the Bode plot

of the noise shape filter used to model the noise(see figure C.3). Further increase of the

threshold resulted in negligible increase of the resulting variances. The results are:

σ2vnoise

x 1.679 · 10−13m2

y 1.380 · 10−13m2

z 3.690 · 10−13m2

θ 5.720 · 10−9rad2

η 1.589 · 10−8rad2

φ 1.345 · 10−8rad2

Table C.4: Measurement noise variances
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C.2.5.2 Assessment of Measurement Error Uncertainty

Assuming a 10% error on position measurement, a reasonably conservative estimate of

the worst case measurement error is needed.

xmeas = (1± 0.1)xreal (C.45)

While for the command error case, assuming 10% of the maximum actuation was an

appropriate estimate of the real error (it is desirable to exploit the maximum possible

actuation), assuming 10% of the maximum overshoot is not reasonable, since the main

goal of the controller design is to avoid high overshoots. A reasonable worst-case dis-

placement is assumed to be 1.5 times the worst-case initial displacement condition for

every degree of freedom. The worst-case measurement error is then computed based on

that assumption.

xmax
∼= 1.5x0max (C.46)

xerr = xreal − xmeas = ±0.1xreal ≤ ±0.1xmax (C.47)

|xerr| = 0.1xmax = 0.15x0max (C.48)

E
[
x2err

]
= 0.0255x20max (C.49)

The results are:

15% initial displacement σ2vmeaserr

x 3 · 10−5m 9 · 10−10m2

y 3 · 10−5m 9 · 10−10m2

z 3 · 10−5m 9 · 10−10m2

θ 3 · 10−5rad 9 · 10−8rad2

η 3 · 10−5rad 9 · 10−8rad2

φ 3 · 10−5rad 9 · 10−8rad2

Table C.5: Measurement error variances

C.2.5.3 Final R Matrices

As can be verified by looking at the above tables, the uncertainty due to the measurement

error dominates the one due to the noise by 3 orders of magnitude for the translation

degrees of freedom, while it is much closer for the rotational ones. It is therefore necessary

to further proceed by developing a summation of contributions for the rotational degrees

of freedom, based on a worst case error scenario. The sum of the maximum measurement

error and the average noise one is considered, and is taken as the worst case maximum
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error between our model and reality. The computation of the σ2v parameter is then

carried out using the following formula:

σ2v =

(√
σ2vmeaserr +

√
σ2vnoise

)2

(C.50)

The results for the final R matrices are:

σ2v

x 9 · 10−10m2

y 9 · 10−10m2

z 9 · 10−10m2

θ 1.4 · 10−7rad2

η 1.8 · 10−7rad2

φ 1.7 · 10−7rad2

Table C.6: Final R matrix variances

C.3 Estimator Selection

Both designed state estimators were tested with no feedback command, to test their per-

formances and assess which one should be chosen for controller design. The simulations

were run without introducing the control signal, in order to assess the pure estimation

capabilities of both designs. Figures C.4 through C.13 show the results of the compar-

ison. All the estimates show a deviation from the correct values for times greater than

40 to 60 seconds depending on the case. This is caused by the position-dependent sensor

error, which keeps increasing over time due to the absence of a control signal. Only the

Kalman filter estimate is shown for the displacement, since the reduced observer does

not compute it.
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C.3.1 Test mass position and attitude estimates
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Figure C.4: z displacement, KF estimate

0 20 40 60 80
0

0.002

0.004

0.006

0.008

0.01

0.012

Time [s]

η 
A

ng
le

 [r
ad

]

 

 

Real η Angle
KF estimate

Figure C.5: η angle, KF estimate
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C.3.2 Test mass velocity and rate estimates
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Figure C.6: KF and Observer velocity estimates
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Figure C.7: KF and Observer rate estimates
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C.3.3 Test mass velocity and rate estimate errors
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Figure C.8: KF and Observer velocity estimates error
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Figure C.9: KF and Observer rate estimates error
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C.3.4 Disturbance forces and torques estimates
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Figure C.10: KF and Observer DC force estimates
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Figure C.11: KF and Observer DC torque estimates
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C.3.5 Disturbance forces and torques estimates errors
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Figure C.12: KF and Observer DC force estimates errors
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Figure C.13: KF and Observer DC torque estimates errors
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As can be seen from the plots, the KF position estimate is essentially coincident with

the measured position.

The KF velocity estimates converge to their respective correct velocity values in less

than 10 seconds, while the Observer ones take about 20 seconds (two times the design

settling time).

The KF disturbance forces and torques estimation takes about 10 seconds to converge,

while the observer one takes about 20.

Just by comparison of the estimates plots, it is clear that the Kalman filter performance

is better than the reduced states observer one, both in terms of convergence speed, and

noise rejection.

When applying a command signal, however, both estimators performances are deteri-

orated by the commanded-to-actuated error. This deterioration affects mainly the DC

forces estimation, and fades away in time. This effect is dependent on the magnitude

ratio between the actuation error, and the disturbance effect to be estimated. The

situation for the studied case is depicted in table C.7.

Translational cases [N] Rotational cases [Nm]

Greatest actuation error Fz ∼= 1.1 · 10−6 Tη ∼= 1.7 · 10−7

Greatest disturbance FDz ∼= 1.9 · 10−7 TDθ ∼= 2.3 · 10−11

Table C.7: Command Errors against Disturbances Comparison

By assuming the actuation error to be 5%, (which may still be an optimistic estimate)

simple magnitude considerations are enough to conclude that, while translational degrees

of freedom we should present no particular issues, a correct torque disturbance estimation

requires an essentially perfect command torque application (which is not available). Even

a 1% error in applied torque would be 100 times bigger than the disturbance torque we

are willing to estimate, thus justifying the poor torque estimation performances of both

the reduced state observer and the Kalman filter.



Appendix D

Maximum Force Actuation

Algorithm

D.1 Derivation of Maximum Force Actuation Algorithm

In this section, the derivation of the implemented maximum force actuation algorithm

is presented. The final expression of the solution is omitted as it does not contribute to

the problem understanding.

The general system of equations for force, torque and test mass voltage is [7]:

Fx =
1

2

4∑
i=1

aiV
2
i (D.1)

Fϕ =
1

2

4∑
i=1

biV
2
i (D.2)

VTM =

4∑
i=1

ciVi = 0 (D.3)

The case where a positive force and positive torque are commanded is considered. The

overall concept can then be generalized by substituting the “number” (1 2 3) identifica-

tion of the electrodes with the “role” (Force+Torque, Force, Torque).

As in the normal actuation algorithm, the V4 electrode voltage is assumed to be zero.

The equations are then:

Fx =
1

2
(a1V

2
1 + a2V

2
2 + a3V

2
3 ) (D.4)

Fϕ =
1

2
(b1V

2
1 + b2V

2
2 + b3V

2
3 ) (D.5)
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VTM = c1V1 + c2V2 + c3V3 = 0 (D.6)

V4 = 0 (D.7)

In this system, the torque is an input, and one of the electrode voltages V1 and V2 will

be fixed to the maximum value of 130.1 V to get a maximum force (see section 4.2). It

is therefore necessary to solve for the remaining one between V1 and V2, for V3 and for

the force Fx.

The zero TM potential equation is used to substitute V3 with a combination of V2 and

V1:

V3 = −c1V1 + c2V2
c3

(D.8)

Substituting D.8 into D.5, after some expansion and collecting of terms:

V 2
1

(
b1 + b3

c21
c23

)
+ 2b3

c1c2
c23

V1V2 + V 2
2

(
b2 + b3

c22
c23

)
− 2Fϕ = 0 (D.9)

Equation D.9 is a second order polynomial in both V1 and V2 (F+T and F voltage),

which can be solved for either one of them, when fixing the remaining one. By doing so,

4 possible solutions are obtained (2 solutions for V1 when fixing V2 and vice versa):

V1 = 130.1V

V2 =

−b3
c1c2

c23
V1 ±

√(
b3
c1c2

c23
V1

)2

−
(
b2 + b3

c22
c23

)[
V 2
1

(
b1 + b3

c21
c23

)
− 2Fϕ

]
(
b2 + b3

c22
c23

)
(D.10)

And
V1 =

−b3
c1c2

c23
V2 ±

√(
b3
c1c2

c23
V2

)2

−
(
b1 + b3

c21
c23

)[
V 2
2

(
b2 + b3

c22
c23

)
− 2Fϕ

]
(
b1 + b3

c21
c23

)
V2 = 130.1V

(D.11)

These solutions contain combinations of the various b and c coefficients inside square

roots and in the denominator. The b and c coefficients are polynomial expressions of

the relevant coordinates, whose order depends on the adopted capacitance model. This

implies the need for investigating the existence of real solutions, and particular care

for special cases where singularities may happen. While it has been shown that a real

solution always exists for cases of interest, and the singularities can be clearly identified

and avoided by adopting a proper alternative expression for the solution, the complete

solution has been found impractical to implement for several reasons:
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• Identification of singularities suffers from numerical issues

• The calculation has to be carried out adopting long expressions for the coefficients

• The calculation can not be generalized with respect to the force/torque command

sign combination: different sets of coefficients have to be calculated depending on

the input commands

A linearization in the displacements of the voltage solutions (eq D.10 and D.11), adopting

a first order capacitance model for the coefficients, has then been carried out, imple-

mented and tested.

The linearized implementation was found to produce an output force almost equivalent

to the one obtained using the complete voltage solutions, while introducing significantly

higher torque errors when a maximum force of the same sign of the displacement is

required.

Figures D.1 D.2 and D.3 show the output force and torque plots, calculated using the 6th

order model, for the full solutions using a 4th order capacitance model, and the linearized

solutions using a 1st order capacitance model. The plots have been generated requiring

a negative maximum force and a 5 nNm torque, for varying z and zero x and η. Figure

D.1 shows that the force generated by the voltages is essentially equivalent for the two

implementations. Figure D.2 shows the generated torque for positive displacement and

negative force is again essentially equivalent for the two implementations. Figure D.3

finally shows that the linearized implementation suffers from very large errors in the

generated torque when the displacement and required force sign are the same. This case

is however never encountered in the proposed control strategy, as requiring a maximum

force of the same sign as the measured displacement means to break a velocity that

reduces the displacement itself (v̇ = −umaxsign (v)). The switching logic avoids such a

scenario and therefore it can be stated that, for correct controller behaviour, the torque

errors shown in figure D.3 are never encountered.

In the end, the linearized version of the solutions was chosen. The driving considerations

for this choice were:

• The small difference in terms of generated force and torque with respect to the

ones obtained using the complete solutions, when a reasonable combination of

force/displacement signs was considered;

• The vastly superior implementation flexibility of the linearized approach.
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Figure D.1: Generated forces for complete and linearized maximum force actuation
algorithm implementations
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Figure D.2: Generated torques for complete and linearized maximum force actuation
algorithm implementations, positive z displacement
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Figure D.3: Generated torques for complete and linearized maximum force actuation
algorithm implementations, negative z displacement

When finally all the solutions (in terms of voltage triplets V1 V2 V3) have been computed,

a check is performed, to exclude every triplet that contains one or more voltages outside

the saturation limits.

The force associated with the remaining voltage triplets is then computed using a first

order capacitance model.

The highest computed force is picked as final solution.

The correct voltage triplet, yielding the maximum possible actuated force for the par-

ticular displacements combination, while producing the required torque, is the one used

to compute the force picked at the previous step.

This procedure allows to know both the value of the maximum force that can be gener-

ated for given conditions, and the voltages needed to produce it. A schematic represen-

tation of the procedure is given in figure D.4.



Appendix D. Maximum Force Actuation Algorithm 114

Position and 

command inputs

Use linearized solutions to 

compute voltage triplets
VT1 VT3 VT3

Check for saturationMax(|VTi |)>130.1?

Compute force

Find largest force

Pick voltage triplet

F(VTi )

No

Yes
Discard triplet

Find i for which 

F(VTi ) is largest

VTout=VTi

x y φ Fx Fφ 

Figure D.4: Schematic diagram of the maximum force actuation algorithm logic

D.2 Evaluation of Minimum Torque Limit

In this section, a simplified evaluation of the minimum torque required to avoid the

maximum angular overshoot, for a given initial rotation and rotational rate is carried

out.

In order to be able to gain advantage from the force maximization concept, it is needed

to limit the torque input to a low level, such that the major portion of the available

electrostatic actuation authority will be used in producing force.

An assessment of the minimum needed torque actuation is developed, by giving the

condition that, at maximum overshoot conditions (which is defined as the maximum

accepted displacement) the test mass attitude rate must be zero:

qmax = q (tmax + tdrift) (D.12)

v (tmax + tdrift) = 0 (D.13)
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The equations of motion for the rotational degree of freedom write:

q (tmax + tdrift) = q0 + v0 (tmax + tdrift) +
1

2
aDCt

2
drift +

1

2
aeff t

2
max (D.14)

v (tmax + tdrift) = v0 + aDCtdrift + aeff tmax (D.15)

Where:

• tdrift is the test mass free drifting time (after release and before start of control)

• tmax is the amount of time, measured starting from tdrift, that it takes to reach

the maximum overshoot conditions

• q0 and v0 are, respectively, position and velocity initial conditions

• aDC is the test mass disturbance acceleration

• aeff is the test mass effective acceleration, defined as aDC + aCMD

From orders of magnitude considerations:

• aCMD
∼= 10−5 rad

s2

• aDC ∼= 10−8 rad
s2

Neglecting in both equations the terms that multiply aDC , the following set of equations

is obtained:

q (tmax + tdrift) = q0 + v0 (tmax + tdrift) +
1

2
aeff t

2
max ≤ qmax (D.16)

v (tmax + tdrift) = v0 + aeff tmax = 0 (D.17)

By isolating tmax in equation D.17, and substituting it in equation D.16, the latter

becomes:

q0 + v0

(
− v0
aeff

+ tdrift

)
+

1

2
aeff

(
v0
aeff

)2

≤ qmax (D.18)

After some algebra, the inequality for the acceleration becomes:

aeff ≥
v20

2 (qmax − (q0 + v0tdrift))
(D.19)

Then, applying the definition of aeff :

aCMD ≥
v20

2 (qmax − (q0 + v0tdrift))
− aDC (D.20)
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Figure D.5: Minimum required torque for 10 mrad maximum overshoot

Which can be expressed more conservatively as:

aCMD ≥
v20

2 (qmax − (q0 + v0tdrift))
+ |aDC | (D.21)

The results of application of equation D.21 with the available data, for various values of

initial velocity (for a fixed 10 mrad maximum overshoot) or maximum allowed overshoot

(for a fixed 0.1 mrad/s release angular velocity), are shown in figures D.5 and D.6. The

5 nNm value chosen as torque limit for attitude controller is shown. The case shown in

the pictures is for the θ DOF, but the result is analogous for any of the rotational DOF,

the difference being only in the aDC term, which is anyway of negligible magnitude.

Looking at the results given in figures D.5 and D.6, and considering that the maximum

torque actuation authority is in the order of 10−8 Nm, it can be concluded that a 5 nNm

torque is sufficient to prevent the test mass attitude from reaching maximum overshoot

values.
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Figure D.6: Minimum required torque for 0.1 mrad/s release rate

D.3 Maximum Force Command Calculation for Estimator

Input

In this section, the problem of providing the state estimator with a command input

when operating in the “maximum actuation” regime is addressed.

Due to the absence of a “real” force command output from the controller, while operating

in its velocity breaking regime, the need arose for an evaluation of the actuated maximum

force. A resulting force computation was included in the capacitive actuation algorithm

which, based on the selected voltage triplet, carried out the calculation of the output

force and provided it as an output, which was then used as input in the Kalman filter.

However, due to the practical necessity of using a first order capacitance model in the

calculations, large errors were being introduced as the displacement grew. A comparison

of the actuated force for full voltage on two electrodes, computed with 1st and 6th order

models is shown in Figure A 16. Using as filter input the force computed with the

first order model introduced huge filter errors, particularly on the disturbance estimate.

A strategy was adopted, exploiting the knowledge that, beyond a certain limit, the

“real” force showed an asymptotic-like behavior. With this in mind, the force output

computed using the linear model was “cut” when it fell below a certain magnitude, and

was substituted with a constant value (see figure D.8). The optimal constant value to

adopt was calculated by minimizing the squared error between the first order model
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Figure D.7: Comparison of computed force for 1st and 6th order capacitance model
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Figure D.8: Composition of corrected force output
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output and the 6th order model output. The optimization was carried out between

nominal position and the assumed (1.7 mm) validity limit of the 6th order model.

The case of a negative z force for positive z displacement is considered. The simplified

case of full voltage application on two electrodes is adopted. The assumed real force is

calculated with the 6th order model:

F6th =
1

2
2

(
dCEL,TM

dz
+
dCEL,H
dz

)
6th

V 2
max (D.22)

The force calculated with the 1st order model is:

F1st =
1

2
2

(
dCEL,TM

dz
+
dCEL,H
dz

)
1st

V 2
max (D.23)

The computed output force is calculated with the 1st order model, and then cut to a

constant value:

Fout =

{
F1st

F1st (zc)

z < zc

z ≥ zc
(D.24)

The calculation of the integral the squared error between the assumed real force, and

the output force, as a function of the cut displacement zc is carried out. The integral

is truncated at the assumed 6th order model validity limit, which in the case of the z

coordinate, is 1.7 mm.

SquaredError =

∫ zlim

0
(F6th − Fout)2dz (D.25)

SquaredError =

∫ zc

0
(F6th − F1st)

2dz +

∫ zlim

zc

(F6th − F1st (zc))
2dz (D.26)

The value of zc which zeroes the derivative of the computed integral is found, and a

verification that it represents a minimum by looking at the sign of the second derivative

is performed. The resulting output force is shown in figure D.9 for the z case. Resulting

values for the three degrees of freedom are reported in table D.1.

qc |F1st| (qc)

x 8.654 · 10−4m 1.877 · 10−6N
y 6.182 · 10−4m 1.980 · 10−6N
z 7.385 · 10−4m 1.042 · 10−6N

Table D.1: Resulting values for force threshold
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Figure D.9: Adopted force calculation output
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Università degli studi di Trento, September 2013.

[16] John B. Moore Teng-Tiow Tay, Iven Mareels. High Performance Control.
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